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Quick guide

This book has four main parts:

• Part I introduces causal models and a Bayesian approach to learning about them and
drawing inferences from them.

• Part II applies these tools to strategies that use process tracing, mixed methods, and
“model aggregation.”

• Part III turns to design decisions, exploring strategies for assessing what kind of data is
most useful for addressing different kinds of research questions given knowledge to date
about a population or a case.

• In Part IV we put models into question and outline a range of strategies one can use to
justify and evaluate causal models.

Resources

We (with wonderful colleagues) have developed an R package—CausalQueries—to accompany
this book, hosted on Cran. Supplementary Materials, including a guide to the package, can
be found at https://integrated-inferences.github.io/.
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Corrections

If (when!) we find errors we will correct them using track changes formatting lik htis like this
and list notable instances in section Chapter 19.
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1 Introduction

Chapter summary

We describe the book’s general approach, preview our argument for the utility of causal
models as a framework for choosing research strategies and for drawing causal inferences,
and provide a roadmap for the rest of the book. We highlight the approach’s payoffs for
qualitative analysis, for combining intensive and extensive empirical strategies, and for
making research design choices.

Here is the key idea of this book.

Quantitative social scientists spend a lot of time trying to understand causal relations between
variables by looking across large numbers of cases to see how outcomes differ when postulated
causes differ. This strategy relies on variation in causal conditions across units of analysis, and
the quality of the resulting inferences depends in large part on what forces give rise to that
variation.

Qualitative social scientists, like historians, spend a lot of time looking at a smaller set of
cases and seek to learn about causal relations by examining evidence of causal processes in
operation within these cases. Qualitative scholars rely on theories of how things work—theories
that specify what should be observable within a case if indeed an outcome were generated by
a particular cause.

These two approaches seem to differ in what they seek to explain—individual- or population-
level outcomes, in the forms of evidence they require—cross-case variation or within-case
detail, and in what they need to assume in order to draw inferences—knowledge of assignment
processes or knowledge of causal processes.

The central theme of this book is that this distinction, though culturally real (Goertz and
Mahoney 2012), is neither epistemologically deep nor analytically helpful. Social scientists
can work with causal models that simultaneously exploit cross-case variation and within-case
detail, that address both case- and population-level questions, and that both depend on, and
contribute to developing, theories of how things work.1 In other words, with well-specified
causal models, researchers can make integrated inferences.

1We will sometimes follow convention and refer to “within-case” and “cross-case” observations. However, in the
framework we present in this book, all data are data on cases and enter into analysis in the same fundamental
way: We are always asking how consistent a given data pattern is with alternative sets of beliefs.
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In this book, we describe an approach to integrating inferences in which researchers form
causal models, update those models using data, and then query the models to get answers
to particular causal questions. This framework is very different from standard statistical
approaches in which researchers focus on selecting the best estimator to estimate a particular
estimand of interest. In a causal models framework, the model itself gets updated: We begin
by learning about processes and only then draw inferences about particular causal relations of
interest, either at the case level or at the population level.

We do not claim that a causal-model-based approach is the best or only strategy suited to
addressing causal questions. There are plenty of settings in which other approaches would
likely work better. For instance, it is hard to beat a difference in means if you have easy access
to large amounts of experimental data and are interested in sample average treatment effects.
But we do think that the approach holds great promise—allowing researchers to combine
disparate data in a principled way to ask a vast range of sample- and population-level causal
questions, helping integrate theory and empirics, and providing coherent guidance on research
design. It should, we think, sit prominently in the applied researcher’s toolkit.

Our goals in this book are to motivate this approach; provide an introduction to the theory of
(structural) causal models; provide practical guidance for setting up, updating, and querying
causal models; and show how the approach can inform key research-design choices, especially
case-selection and data-collection strategies.

1.1 The Case for Causal Models

There are three closely related motivations for embracing a causal models approach. First
is a concern with the limits of design-based inference. Second is an interest in integrating
qualitative knowledge with quantitative approaches. Third is an interest in better connecting
empirical strategies to theory.

1.1.1 The Limits to Design-based Inference

To caricature positions a bit, consider the difference between an engineer and a skeptic. The
engineer tackles problems of causal inference using models: theories of how the world works,
generated from past experiences and applied to the situation at hand. They come with prior
beliefs about a set of mechanisms operating in the world and, in a given situation, will ask
whether the conditions are in place for a known mechanism to operate effectively. The skeptic,
on the other hand, maintains a critical position, resisting basing conclusions on beliefs that
are not supported by evidence in the context at hand.

The engineer’s approach echoes what was until recently a dominant orientation among social
scientists. At the turn of the current century, much analysis—both empirical and theoretical—
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took the form of modeling processes (data-generating processes) and then interrogating those
models (King 1998).

Over the last two decades, however, skeptics have raised a set of compelling concerns about
the assumption-laden nature of this kind of analysis, while also clarifying how valid inferences
can be made with limited resort to models. The result has been a growth in the use of
design-based inference techniques that, in principle, allow for model-free estimation of causal
effects (see Dunning (2012), Gerber, Green, and Kaplan (2004), Druckman et al. (2011), and
Palfrey (2009) among others). These include lab, survey, and field experiments and natural-
experimental methods exploiting either true or “as-if” randomization by nature. With the turn
to experimental and natural-experimental methods has come a broader conceptual shift, with
a growing reliance on the “potential outcomes” framework, which provides a clear language for
articulating causal relations (see Rubin (1974), Splawa-Neyman et al. (1990) among others)
without having to invoke fully specified models of data-generating processes. See Aronow and
Miller (2019) for a thorough treatment of “agnostic statistics”, which shows how much can be
done without recourse to commitments to models of data generating processes.

The ability to estimate average effects and to characterize uncertainty—for instance, calculat-
ing 𝑝-values and standard errors—without resorting to models is an extraordinary development.
In Fisher’s (2017) term, with these tools, randomization processes provide a “reasoned basis
for inference,” placing empirical claims on a powerful footing.

At the same time, excitement about the strengths of these approaches has been mixed with
concerns about how the approach shapes inquiry. We highlight two.

The first concern—raised by many in recent years (e.g., Thelen and Mahoney (2015))—is about
design-based inference’s scope of application. While experimentation and natural experiments
represent powerful tools, the range of research situations in which model-free inference is
possible is limited. For a wide range of questions of interest both to social scientists and to
society, controlled experimentation is impossible, whether for practical or ethical reasons, and
claims of “as-if” randomization are not plausible (Humphreys and Weinstein 2009).2 Thus,
limiting our focus to those questions for which, or situations in which, the credibility of causal
claims can be established “by design” would represent a dramatic narrowing of social science’s
ken.

To be clear, this is not an argument against experimentation or design-based inference when
these can be used; rather, it is an argument that social science needs a broader set of tools.

The second concern is more subtle. The great advantage of design-based inference is that it
liberates researchers from the need to rely on models to make claims about causal effects. The
risk is that, in operating model free, researchers end up learning about effect sizes but not
about models. Yet often, the model is the thing we want to learn about. Our goal as social
scientists is to come to grips with how the world works, not simply to collect propositions

2Of course, even when randomization is possible, the conditions needed for clean inference from an experiment
can sometimes be difficult to meet (Cook 2018).
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about the effects that different causes have had on different outcomes in different times and
places. It is through models that we derive an understanding of how things might work in
contexts and for processes and variables that we have not yet studied. Thus, our interest in
models is intrinsic, not instrumental. By taking models out of the equation, as it were, we lose
the baby with the bathwater.

We note, however, that although we return to models, lessons from the “credibility revolution”
permeate this book. Though the approach we use relies on models, we also highlight the
importance of being skeptical toward models, checking their performance, and—to the extent
possible—basing them on weaker, more defensible models. In practice, we sometimes find
that progress, even for qualitative methods, relies on the kind of background knowledge that
requires randomization. (See our discussions in Section 11.2 and especially Section 15.1.1).

1.1.2 Qualitative and Mixed-method Inference

Recent years have seen the elucidation of the inferential logic behind “process-tracing” proce-
dures used in qualitative political science and other disciplines. On our read of this literature,
the logic of process tracing depends on a particular form of model-based inference.3 While
process tracing as a method has been around for more than three decades (e.g., George and
McKeown (1985)), its logic has been most fully laid out by qualitative methodologists in po-
litical science and sociology over the last twenty years (e.g., Bennett and Checkel (2015b),
George and Bennett (2005), Brady and Collier (2010), P. A. Hall (2003), Mahoney (2010)).
Whereas King, Keohane, and Verba (KKV) (1994) sought to derive qualitative principles of
causal inference within a correlational framework, qualitative methodologists writing in the
wake of KKV have emphasized and clarified process tracing’s “within-case” inferential logic: in
process tracing, explanatory hypotheses are tested principally based on observations of what
happened within a case, rather than on observation of covariation of causes and effects across
cases.

The process-tracing literature has also advanced increasingly elaborate conceptualizations of
the different kinds of “probative value” that within-case evidence can yield. For instance, qual-
itative methodologists have explicated the logic of different test types (“hoop tests”, “smoking

3As we describe in Humphreys and Jacobs (2015), the term “qualitative research” means many different
things to different scholars, and there are multiple approaches to mixing qualitative and quantitative meth-
ods. There we distinguish between approaches that suggest that qualitative and quantitative approaches
address distinct, if complementary, questions; those that suggest that they involve distinct measurement
strategies; and those that suggest that they employ distinct inferential logics. The approach that we employ
in Humphreys and Jacobs (2015) connects most with the third family of approaches. Most closely related to
political science is work of Glynn and Quinn (2011), in which researchers use knowledge about the empirical
joint distribution of the treatment variable, the outcome variable, and a posttreatment variable, alongside
assumptions about how causal processes operate, to tighten estimated bounds on causal effects. In the
present book, however, we move toward a position in which fundamental differences between qualitative
and quantitative inferences tend to dissolve, with all inference drawing on what might be considered a
“qualitative” logic in which the researcher’s task is to confront a pattern of evidence with a theoretical logic.
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gun tests”, etc.) involving varying degrees of specificity and sensitivity (Van Evera (1997),
Collier (2011), Mahoney (2012)).4 Other scholars have described the leverage provided by
process-tracing evidence in Bayesian terms, moving from a set of discrete test types to a
more continuous notion of probative value (Fairfield and Charman (2017), Bennett (2015),
Humphreys and Jacobs (2015)).5

Yet, conceptualizing the different ways in which probative value might operate leaves a funda-
mental question unanswered: What gives within-case evidence its probative value with respect
to causal relations? We do not see a clear answer to this question in the current process-tracing
literature. Implicitly—but worth rendering explicit—the probative value of a given piece of
process-tracing evidence always depends on researcher beliefs that come from outside the case
in question. We enter a research situation with a model of how the world works, and we use
this model to make inferences given observed patterns in the data—while at the same time
updating those models based on the data.

A key aim of this book is to demonstrate the role that models can—and, in our view, must—
play in drawing case-level causal inferences and to clarify conditions under which these models
can be defended. To do so, we draw on an approach to specifying causal models developed
originally in computer science and that predates most of the process-tracing literature. The
broad approach, described in Cowell et al. (1999) and Pearl (2009), is consistent with the
potential outcomes framework, and provides rules for updating population- and case-level
causal queries from different types of data.

In addition to clarifying the logic of qualitative inference, we will argue that such causal
models can also enable the systematic integration of qualitative and quantitative forms of
evidence. Social scientists are increasingly developing mixed-method research designs, and
research strategies that combine quantitative with qualitative forms of evidence (Small 2011).
A typical mixed-methods study includes the estimation of causal effects using data from many
cases as well as a detailed examination of the processes taking place in a few cases. Classic
examples of this approach include Lieberman’s study of racial and regional dynamics in tax
policy (Evan S. Lieberman 2003); Swank’s analysis of globalization and the welfare state
(Swank (2002)); and Stokes’ study of neoliberal reform in Latin America (Stokes 2001). Major
recent methodological texts provide the intellectual justification of this trend toward mixing,
characterizing small-𝑛 and large-𝑛 analysis as drawing on a single logic of inference (King,
Keohane, and Verba (1994)) and/or as serving complementary functions Collier, Brady, and
Seawright (2010). The American Political Science Association now has an organized section
devoted in part to the promotion of multimethod investigations, and the emphasis on multiple

4A smoking-gun test seeks information that is only plausibly present if a hypothesis is true (thus, generating
strong evidence for the hypothesis if passed), a hoop test seeks data that should certainly be present if a
proposition is true (thus generating strong evidence against the hypothesis if failed), and a doubly decisive
test is both smoking-gun and hoop (for an expanded typology, see also Ingo Rohlfing (2013)).

5In Humphreys and Jacobs (2015), we use a fully Bayesian structure to generalize Van Evera’s four test types
in two ways: first, by allowing the probative values of clues to be continuous; and, second, by allowing for
researcher uncertainty (and, in turn, updating) over these values.
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strategies of inference research is now embedded in guidelines from many research funding
agencies (Creswell and Garrett 2008).

However, while scholars frequently point to the benefits of mixing correlational and process-
based inquiry (e.g., Collier, Brady, and Seawright (2010), p.~181), and have sometimes mapped
out broad strategies of multimethod research design (Evan S. Lieberman (2005), Seawright
and Gerring (2008), Seawright (2016)), they have rarely provided specific guidance on how
the integration of inferential leverage should unfold. In particular, the literature has not
supplied specific, formal procedures for aggregating findings—whether mutually reinforcing or
contradictory—across different modes of analysis.6

As we aim to demonstrate in this book, however, grounding inference in causal models provides
a very natural way of combining information of the 𝑋, 𝑌 variety with information about the
causal processes connecting 𝑋 and 𝑌 . The approach that we develop here can be readily
addressed both to the case-oriented questions that tend to be of interest to qualitative scholars
and to the population-oriented questions that tend to motivate quantitative inquiry.

As will become clear, when we structure our inquiry in terms of causal models, the conceptual
distinction between qualitative and quantitative inference becomes hard to sustain. Notably,
this is not because all causal inferences depend fundamentally on covariation but because in
a causal-model-based inference, what matters for the informativeness of a piece of evidence is
how that evidence alters beliefs about a model, and in turn, a query. While the apparatus that
we present is formal, the approach—in asking how pieces of evidence drawn from different parts
of a process map onto a base of theoretical knowledge—is arguably most closely connected to
process tracing in its core logic.

1.1.3 Connecting Theory and Empirics

The relationship between theory and empirics has been a surprisingly uncomfortable one in po-
litical science. In a prominent intervention, for instance, Clarke and Primo (2012) draw atten-
tion to—and critique—political scientists’ widespread reliance on the “hypothetico-deductive”
(H-D) framework, in which a theory or model is elaborated, empirical predictions derived, and
data sought to test these predictions and the model from which they derive. Clarke and Primo
draw on decades of scholarship in the philosophy of science pointing to deep problems with

6A small number of exceptions stand out. In the approach suggested by Gordon and Smith (2004), for instance,
available expert (possibly imperfect) knowledge regarding the operative causal mechanisms for a small num-
ber of cases can be used to anchor the statistical estimation procedure in a large-N study. Western and
Jackman (1994) propose a Bayesian approach in which qualitative information shapes subjective priors that
in turn affect inferences from quantitative data. Relatedly, in Glynn and Quinn (2011), researchers use
knowledge about the empirical joint distribution of the treatment variable, the outcome variable, and a post-
treatment variable, alongside assumptions about how causal processes operate, to tighten estimated bounds
on causal effects. Coppock and Kaur (2022) show how bounds can be placed on causal quantities following
qualitative imputation of missing potential outcomes for some or all cases. Seawright (2016) and Dunning
(2012) describe approaches in which case studies are used to test the assumptions underlying statistical
inferences, such as the assumption of no-confounding or the stable-unit treatment value assumption.
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the H-D framework, including the idea that the truth of a model logically derived from first
principles can be tested against evidence.

In fact, the relationship between theory and evidence in social inquiry is often surprisingly
unclear, both in qualitative and quantitative work. We can perhaps illustrate it best, however,
by reference to qualitative work, where the centrality of theory to inference has been most
emphasized. In process tracing, theory is what justifies inferences. In their classic text on
case-study approaches, George and Bennett (2005) describe process tracing as the search for
evidence of “the causal process that a theory hypothesizes or implies” (6). Similarly, P. A.
Hall (2003) conceptualizes the approach as testing for the causal-process-related observable
implications of a theory; Mahoney (2010) indicates that the events for which process tracers
go looking are those posited by theory (128); and Gerring (2006) describes theory as a source
of predictions that the case-study analyst tests (116). Theory, in these accounts, is supposed
to help us figure out where to look for discriminating evidence.

What is not clear, however, is how deriving within-case empirical predictions from theory
provide leverage on a causal question. From which elements of a theory can scholars derive
informative observable implications? How do the evidentiary requisites for drawing a causal
inference, given a theory, depend on the particular causal question of interest—on whether,
for instance, we are interested in identifying the cause of an outcome in a case, estimating
an average causal effect, or identifying the pathway through which an effect is generated?
Perhaps most confusingly, when a theory tells us what to look for to draw an inference, are
we to make the inferences that we draw be about the theory itself or are we constrained to
making theory-dependent inferences?7 In short, how exactly can we ground causal inferences
from within-case evidence in background knowledge about how the world works?

Much quantitative work in political science features a similarly weak integration between theory
and research design. The modal inferential approach in quantitative work, both observational
and experimental, involves looking for correlations between causes and outcomes, with less
regard for intervening or surrounding causal relationships.8 If a theory suggests a set of
relations, it is common to examine these separately—does 𝐴 cause 𝐵?; does 𝐵 cause 𝐶?;
are relations stronger or weaker here or there?—without standard procedures for bringing
the disparate pieces of evidence together to form theoretical conclusions. More attention has
been paid to empirical implications of theoretical models than to theoretical implications of
empirical models.

In this book, we seek to show how scholars can simultaneously make fuller and more explicit use
of theoretical knowledge in designing their research projects and analyzing data, and make use
of data to update theoretical models. Like Clarke and Primo, we treat models not as veridical

7More precisely, it is not always clear whether the strategy is of the form: (1) “if theory 𝑇 is correct we should
observe 𝐾”, with evidence on 𝐾 used to update beliefs about the theory; or (2) “According to theory 𝑇 , if
𝐴 caused 𝐵 then we should observe 𝐾”, in which case 𝐾 is informative about whether 𝐴 caused 𝐵 under
𝑇 .

8There are of course many exceptions, including work that uses structural equation modeling, and research
that focuses specifically on understanding heterogeneity and mediation processes.
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accounts of the world but as maps–maps, based on prior theoretical knowledge, about causal
relations in a domain of interest. Also, as in Clarke and Primo’s approach, we do not write
down a model in order to test its veracity (though, in later chapters, we do discuss ways of
justifying and evaluating models). Rather, our focus is on how we can systematically use
causal models—in the sense of mobilizing background knowledge of the world—to guide our
empirical strategies and inform our inferences. Grounding our empirical strategy in a model
allows us, in turn, to update our model as we encounter the data, thus letting our theory
evolve in the face of evidence.

1.2 Key Contributions

This book draws on methods developed in the study of Bayesian networks, a field pioneered
by scholars in computer science, statistics, and philosophy to represent structures of causal
relations between multiple variables. Judea Pearl’s Causality provides an indispensable guide
to this body of work (Pearl 2009). Although work in this tradition has had limited traction in
political science to date, the literature on Bayesian networks and their graphical counterparts,
directed acyclic graphs (DAGs), addresses very directly the kinds of problems with which
qualitative and quantitative scholars routinely grapple.9

Drawing on this work, we show in the chapters that follow how a theory can be formalized as
a causal model represented by a causal graph and a set of structural equations. Engaging in
this modest degree of formalization yields enormous benefits. It allows us, for a wide range
of causal questions, to specify causal questions clearly and to draw inferences about those
questions from new data.

For scholars engaging in process tracing, the benefits of this approach are multiple. In partic-
ular, the framework that we describe in this book provides:

• A clear language for defining causal questions of interest, consistent with advances using
the potential outcomes framework and those using graphical causal models.

9For application to quantitative analysis strategies in political science, Rohrer (2018) and Glynn and Quinn
(2007) give clear introductions to how these methods can be used to motivate strategies for conditioning
and adjusting for causal inference. García and Wantchekon (2015) demonstrate how these methods can
be used to assess claims of external validity. With a focus on qualitative methods, Waldner (2015) uses
causal diagrams to lay out a “completeness standard” for good process tracing. Weller and Barnes (2014)
employ graphs to conceptualize the different possible pathways between causal and outcome variables among
which qualitative researchers may want to distinguish. Generally, in discussions of qualitative methodology,
graphs are used to capture core features of theoretical accounts, but are not developed specifically to ensure
a representation of the kind of independence relations implied by structural causal models (notably, what
is called the “Markov condition” in the literature). Moreover, efforts to tie these causal graphs to probative
observations, as in Waldner (2015), are generally limited to identifying steps in a causal chain that the
researcher should seek to observe.
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• A strategy for assessing the “probative value” of evidence drawn from different parts
of any causal network. The approach yields a principled and transparent approach to
answering the question: How should the observation of a given piece of data affect my
causal beliefs about a case?

• A transparent, replicable method for aggregating inferences from observations drawn
from different locations in a causal network. Having collected multiple pieces of evidence
from different parts of a causal process or case context, what should I end up believing
about the causal question of interest?

• A common approach for assessing a wide variety of queries (estimands). We can use the
same apparatus to learn simultaneously about different case-level and population-level
causal questions, such as “What caused the outcome in this case?” and “Through what
pathway does this cause most commonly exert its effect?”

• Guidance for research design. Given finite resources, researchers must make choices
about where to look for evidence. A causal model framework can help researchers assess,
a priori, the relative expected informativeness of different evidentiary and case-selection
strategies, conditional on how they think the world works and the question they want to
answer.

The approach also offers a range of distinctive benefits to researchers seeking to engage in
mixed-method inference and to learn about general causal relations, as well as about individual
cases. The framework’s central payoff for multi-method research is the systematic integration
of qualitative and quantitative information to answer any given causal query. We note that
the form of integration that we pursue here differs from that offered in other accounts of
multi-method research. In Seawright (2016)’s approach, for instance, one form of data—
quantitative or qualitative—is used to draw causal inferences, while the other form of data is
used to test assumptions or improve measures employed in that primary inferential strategy.
In the approach that we develop in this book, in contrast, we are always using all information
available to update causal quantities of interest.

In fact, within the causal models framework, there is no fundamental difference between
quantitative and qualitative data, as both enter as values of nodes in a causal graph. This
formalization—this reductive move—may well discomfit some readers. We acknowledge that
our approach undeniably involves a loss of some of what makes qualitative research distinct
and valuable. Yet, this translation of qualitative and quantitative observations into a common,
causal- model framework offers major advantages. For scholars seeking to mix methods, these
advantages include:

• Transparency. The framework makes manifest precisely how each form of evidence enters
into the analysis and shapes conclusions.

• A procedure for justifying inferences. We use case-level information to learn about pop-
ulations and general theory. But at the same time, we can then also use what we have
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learned about populations to justify inferences about causal relations within individual
cases.

• Cumulation of knowledge. A causal model framework provides a straightforward, prin-
cipled mechanism for building on what we have already learned. As we see data, we
update our model, and then our updated model can inform the inferences we draw from
the next set of observations and give guidance to what sort of future data will be most
beneficial. Models can, likewise, provide an explicit framework for positing and learning
about the generalizability and portability of findings across research contexts.

• Guidance for research design. With a causal model in hand, we can formally assess key
multi-method design choices, including the balance we should strike between breadth
(the number of cases) and depth (intensiveness of analysis in individual cases) and the
choice of cases for intensive analysis.

Using causal models also has substantial implications for common methodological intuitions,
advice, and practice. To touch on just a few of these implications:

• Our elaboration and application of model-based process tracing shows that, given plau-
sible causal models, process tracing’s common focus on intervening causal chains may
be much less productive than other empirical strategies, such as examining moderating
conditions.

• Our examination of model-based case selection indicates that, for many common pur-
poses, there is nothing particularly special about “on the regression line” cases or those
in which the outcome occurred, and there is nothing necessarily damning about selecting
on the dependent variable. Rather, optimal case selection depends on factors that have
to date received little attention, such as the population distribution of cases and the
probative value of the available evidence.

• Our analysis of clue selection as a decision problem shows that the probative value of a
given piece of evidence cannot be assessed in isolation, but hinges critically on what we
have already observed.

The basic analytical apparatus that we employ here is not new. Rather, we see the book’s
goals as being of three kinds. First, we aim to import insights: to introduce social scientists
to an approach that has received little attention in their fields but that can be useful for
addressing the sorts of causal questions with which they are commonly preoccupied. As a
model-based approach, it is a framework especially well suited to fields of inquiry in which
exogeneity frequently cannot be assumed by design—that is, in which we often have no choice
but to be engineers.

Second, we draw connections between the Bayesian networks approach and key concerns and
challenges with which the social sciences routinely grapple. Working with causal models and
DAGs most naturally connects to concerns about confounding and identification that have
been central to much quantitative methodological development. Yet we also show how causal
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models can address issues central to process tracing, such as how to select cases for examination,
how to think about the probative value of causal process observations, and how to structure
our search for evidence, given finite resources.

Third, we provide a set of usable tools for implementing the approach. We provide software,
the CausalQueries package, that researchers can use to make research design choices and
draw inferences from the data.

There are also important limits to this book’s contributions and aims. First, while we make
use of Bayesian inference throughout, we do not engage here with fundamental debates over
or critiques of Bayesianism itself. (For excellent treatments of some of the deeper issues and
debates, see, for instance, Earman (1992) and Fairfield and Charman (2017).)

Second, this book does not address matters of data collection (e.g., conducting interviews,
searching for archival documents) or the construction of measures. For the most part, we
assume that reliable data can be gathered (even if it is costly to do so), and we bracket the
challenges that surround the measurement process itself.10 That said, a core concern of the
book is using causal models to identify the kinds of evidence that qualitative researchers will
want to collect. In Chapter 7, we show how causal models can tell us whether observing
an element of a causal process is potentially informative about a causal question; and in
Chapter 12 we demonstrate how we can use models to assess the likely learning that will arise
from different clue-selection strategies. We also address the problem of measurement error in
Chapter 9, showing how we can use causal models to learn about error from the data.

Finally, while we will often refer to the use of causal models for “qualitative” analysis, we do
not seek to assimilate all forms of qualitative inquiry into a causal models framework. Our
focus is on work that is squarely addressed to matters of causation; in particular, the logic
that we elaborate is most closely connected to the method of process tracing. More generally,
the formalization that we make use of here—the graphical representation of beliefs and the
application of mathematical operations to numerically coded observations—will surely strike
some readers as reductive and not particularly “qualitative.” It is almost certainly the case
that, as we formalize, we leave behind many forms of information that qualitative researchers
gather and make use of. Our aim in this book is not to discount the importance of those
aspects of qualitative inquiry that resist formalization, but to show some of the things we can
do if we are willing to formalize in a particular way.

1.3 The Road Ahead

This book has four parts.

10See Mosley (2013) for a treatment of complexities around interview research in political science and Evan S.
Lieberman (2010) on strategies for historically oriented research.
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In the first part, we present the framework’s foundational concepts. In Chapter 2, following
a review of the potential outcomes approach to causality, we introduce the concept and key
components of a causal model. Chapter 3 illustrates how we can represent causal beliefs in
the form of causal models by translating the arguments of several prominent works of political
science into causal models. In Chapter 4, we set out a range of causal questions that researchers
might want to address—including questions about case-level causal effects, population-level
effects, and mechanisms—and define these queries within a causal model framework. Chapter 5
offers a primer on the key ideas in Bayesian inference that we will mobilize in later sections
of the book. In Chapter 6, we map between causal models and theories, showing how we can
think of any causal model as situated within a hierarchy of complexity: Within this hierarchy,
any causal model can be justified by references to a “lower level,” more detailed model that
offers a theory of why things work the way they do at the higher level. This conceptualization
is crucial insofar as we use more detailed (lower level) models to generate empirical leverage
on relationships represented in simpler, higher level models.

Though some of the material in this first part is technical we try throughout to keep the
discussion jargon free. We couldn’t eliminate jargon entirely though and so we provide a
glossary in Chapter 18 which you can refer to in times of need.

In the second part, we show how we can use causal models to undertake process-tracing and
mixed method inference. Chapter 7 lays out the logic of case-level inference from causal
models: The central idea here is that what we learn from evidence is always conditional on
the prior beliefs embedded in our model. In Chapter 8, we illustrate model-based process
tracing with two substantive applications: one on the issue of economic inequality’s effects on
democratization and a second on the relationship between political institutions and economic
development. Chapter 9 moves to mixed-data problems: situations in which a researcher
wants to use “quantitative” (broadly, 𝑋, 𝑌 ) data on a large set of cases and more detailed
(“qualitative”) data on some subset of these cases. We show how we can use any arbitrary mix
of observations across a sample of any size (greater than 1) to update on all causal parameters
in a model, and then use the updated model to address the full range of general and case-level
queries of interest. In Chapter 10, we illustrate this integrative approach by revisiting the
substantive applications introduced in Chapter 8. Finally, in Chapter 11, we take the project
of integration a step further by showing how we can use models to integrate findings across
studies and across settings. We show, for instance, how we can learn jointly from the data
generated by an observational study and an experimental study of the same causal domain
and how models can help us reason in principled ways about the transportability of findings
across contexts.

In the third part, we unpack what causal models can contribute to research design. In terms
of the Model-Inquiry-Data strategy-Answer strategy framework from Blair, Coppock, and
Humphreys (2023), we can think of Chapters Chapter 2, Chapter 4, and Chapter 5 as corre-
sponding to models, inquiries, and answer strategies, while Data strategies are dealt with in
this third part. Across Chapters Chapter 12, Chapter 13, and Chapter 14 we demonstrate
how researchers can mobilize their models, as well as prior observations, to determine what
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kind of new evidence is likely to be most informative about the query of interest, how to strike
a balance between extensiveness and intensiveness of analysis, and which cases to select for
in-depth process tracing. Consistent with the principle in Blair, Coppock, and Humphreys
(2023) to design holistically, we find that questions around data selection strategies cannot be
answered in isolation from model and query specification.

The fourth and final part of the book steps back to put the model-based approach into question.
Until this point, we will have been advocating an embrace of models to aid inference. But
the dangers of doing this are demonstrably large. The key problem is that with model-based
inference, our inferences are only as good as the model we start with. In the end, while we
advocate a focus on models, we know that skeptics are right to distrust them. The final part
of the book approaches this problem from two perspectives. In Chapter 15, we demonstrate
the possibility of justifying models from external evidence, though we do not pretend that
the conditions for doing so will arise commonly. In Chapter 16, drawing on common practice
in Bayesian statistics, we present a set of strategies that researchers can use to evaluate and
compare the validity of models, and to investigate the degree to which findings hinge on model
assumptions. The key point here is that using a model does not require a commitment to it.
Indeed, the model itself can provide indications that it is doing a poor job.

In the concluding chapter, we summarize what we see as the main advantages of a causal-
model-based approach to inference, draw out a set of key concerns and limitations of the
framework, and identify what we see as the key avenues for future progress in model-based
inference.

Here we go.
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Part II

I Foundations
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2 Causal Models

Chapter summary

We provide a lay-language primer on the counterfactual model of causality and the logic
of causal models. Topics include the representation of causal models with causal graphs
and using causal graphs to read off relations of conditional independence among variables
in a causal domain.

Causal claims are everywhere. Causal knowledge is often not just the goal of empirical social
science, it is also an input into causal inference.1 Causal assumptions are hidden in seemingly
descriptive statements: Claims that someone is guilty, or exploited, or powerful, or weak involve
beliefs about how things would be if conditions were different. Even when scholars carefully
try to avoid causal claim-making, causal verbs—depends, drives, produces, influences—are
hard to avoid.

But while causal claims are commonplace, it is not always clear what exactly is meant by a
causal relation and how causal knowledge about one thing can be marshaled to justify causal
claims about another. For our purposes, the counterfactual view of causality addresses the
first question. Causal models address the second. In this chapter, we discuss each in turn.
The present chapter is largely conceptual, with ideas worked through with a couple of “toy”
running examples. In Chapter 3, we then apply and illustrate many of the key concepts from
this chapter by translating a few prominent arguments from the field of political science into
the language of structural causal models.

2.1 The Counterfactual Model

We begin with what we might think of as a meta-model, the counterfactual model of causation.
At its core, a counterfactual understanding of causation captures a simple notion of causation
as “difference-making.”2 In the counterfactual view, to say that 𝑋 caused 𝑌 is to say: had 𝑋

1As nicely put by Nancy Cartwright: no causes in, no causes out (Cartwright 1989). We return to the point
more formally later.

2The approach is sometimes attributed to David Hume, whose writing contains ideas both about causality as
regularity and causality as counterfactual. On the latter, Hume’s key formulation is, “if the first object had
not been, the second never had existed” (Hume and Beauchamp 2000, vol. 3, sec. VIII). More recently, the
counterfactual view has been set forth by Splawa-Neyman et al. (1990) and Lewis (1973). See also Lewis
(1986).
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been different, 𝑌 would have been different.

A causal effect, in this view, is the difference between two things (two values of 𝑌 ) that might
have happened. This means that by definition, causal effects are not measurable quantities.
They are not differences between two observable outcomes in the world, but, at best, differences
between one observable outcome and a second counterfactual outcome. For this reason, causal
effects need to be inferred, not measured.

In this view, the antecedent, “had 𝑋 been different,” imagines a controlled change in 𝑋—
an intervention that alter 𝑋’s value—rather than a naturally arising difference in 𝑋. The
usual counterfactual claim, then, is not that 𝑌 is different from how it might have been had
circumstances been such that 𝑋 were different; it is, rather, that if one could somehow have
made 𝑋 different in a case, then 𝑌 would have been different in that case.3

Consider a simple example. Teacher A is extraordinary. Students with teacher A do not study
and would perform well whether or not they studied. Students with teacher B perform well if
and only if they study. Moreover, students with teacher B do in fact study. And all perform
well.

When we say that one of teacher B’s students did well because they studied, we are comparing
the outcome that they experienced to the outcome that they would have experienced if (1)
they had had teacher B, as they did but (2) counterfactually, had not studied.

Notably, when we define the effect of studying, we are not comparing the realized outcome of
the studiers to the outcome of the students who in fact did not study. That is because the
students who in fact did not study had teacher A, not B. Moreover, we are not comparing the
realized outcome of a student of teacher B to what that same student would have achieved if
they had had teacher A (and for that reason, had not studied). The reason again is that this
comparison includes the effect of having teacher A and not the effect of studying given they
had teacher B.

Here is a second example, drawn from a substantive domain that we will return to many
times in this book. In his seminal book on democracy and distribution, Carles Boix argues
that low economic inequality is a cause of democratization (Boix 2003). At high levels of
inequality, Boix argues, the elite would rather repress the poor than submit to democracy and
its redistributive consequences; at low levels of inequality, in contrast, redistribution under
democracy will be less costly for the elite than would continued repression. Now, in light
of this theory, consider the claim that Switzerland democratized (𝐷 = 1) because it had a
relatively low level of economic inequality (𝐼 = 0). In the counterfactual view, this claim
is equivalent to saying that, if Switzerland had had a high level of inequality, the country
would not have democratized. Low economic inequality made a difference. The comparison
for the causal statement is with the outcome Switzerland would have experienced under an

3In the terminology of Pearl (2000), we can represent this quantity using a “do” operator: 𝑌 (do(𝑋 = 𝑥)) is
the value of 𝑌 when the variable 𝑋 is set to the value 𝑥.
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intervention that boosted its historic level of economic inequality (but made no other change)—
not with how Switzerland would have performed if it had been like one of the countries that in
fact had higher levels of inequality, cases that likely differ from Switzerland in other causally
relevant ways.

2.1.1 Potential Outcomes

Researchers often employ what is called the “potential outcomes” framework when they need
precise formal language for describing counterfactual quantities (Rubin 1974). In this frame-
work, we characterize how a given unit responds to a causal variable by positing the outcomes
that the unit would take on at different values of the causal variable. Most commonly, 𝑌𝑖(0)
and 𝑌𝑖(1) are used to denote the values that 𝑌 would take for unit 𝑖 if 𝑋 were 0 and 1,
respectively.4

One setting in which it is quite easy to think about potential outcomes is medical treatment.
Imagine that some individuals in a diseased population have received a drug (𝑋 = 1) while
others have not received the drug (𝑋 = 0). Assume that, subsequently, a researcher observes
which individuals become healthy (𝑌 = 1) and which do not (𝑌 = 0). Given the assignments
of all other individuals,5 we can treat each individual as belonging to one of four unobserved
response “types,” defined by the outcomes that the individual would have if they received or
did not receive treatment:6

• adverse: Those individuals who would get better if and only if they do not receive the
treatment

• beneficial: Those who would get better if and only if they do receive the treatment
• chronic: Those who will remain sick whether or not they receive the treatment
• destined: Those who will get better whether or not they receive the treatment.

Table 2.1 maps the four types (𝑎, 𝑏, 𝑐, 𝑑) onto their respective potential outcomes. In each
column, we have simply written down the outcome that a patient of a given type would
experience if they are not treated, and the outcome they would experience if they are treated.
We are here always imagining controlled changes in treatment: the responses if treatments are
changed without changes to other background (or pre-treatment) conditions in the case.

4To avoid ambiguity, we prefer 𝑌𝑖(𝑋 = 0) and 𝑌𝑖(𝑋 = 1). Alternative notation, used in Holland (1986) for
instance, places the treatment condition in the subscript: 𝑌𝑡(𝑢), 𝑌𝑐(𝑢), with 𝑢 used to capture individual
level features. Sometimes the pairs are written 𝑌𝑢0, 𝑌𝑢1.

5We note that we are conditioning on the assignments of others. If we wanted to describe outcomes as a
function of the profile of treatments received by others, we would have a more complex type space. For
instance, in an 𝑋 → 𝑌 model with 2 individuals, we would report how (𝑌1, 𝑌2) respond to (𝑋1, 𝑋0); each
vector can take on four values producing a type space with 44 types rather than 22. The complex type space
could be reduced back down to four types again, however, if we invoked the assumption that the treatment
or non-treatment of one patient has no effect on the outcomes of other patients—an assumption known as
the stable unit treatment value assumption.

6See Copas (1973) for an early classification of this form. The literature on probabilistic models also refers to
such strata as “principal strata,” “canonical partitions,” or “equivalence classes.”
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Table 2.1: Potential outcomes: What would happen to each of four possible types of case if
they were or were not treated.

Type a Type b Type c Type d
adverse beneficial chronic destined

Outcome if not
treated

Healthy Sick Sick Healthy

Outcome if
treated

Sick Healthy Sick Healthy

We highlight that, in this framework, case-level causal relations are treated as deterministic.
A given case has a set of potential outcomes. Any uncertainty about outcomes enters as in-
complete knowledge of a case’s “type,” not from underlying randomness in causal relations.
This understanding of causality—as ontologically deterministic, but empirically imperfectly
understood—is compatible with views of causation commonly employed by qualitative re-
searchers (see, e.g., Mahoney (2008)), and with understandings of causal determinism going
back at least to Laplace (1901).

As we will also see, we can readily express this kind of incompleteness of knowledge within a
causal model framework: Indeed, the way in which causal models manage uncertainty is central
to how they allow us to pose questions of interest and to learn from evidence. Certainly, there
are situations we could imagine in which one might want to conceptualize potential outcomes
themselves as random (for instance, if individuals in different conditions play different lotteries).
But for the vast majority of the settings we consider, not much of importance is lost if we treat
potential outcomes as deterministic but possibly unknown: Every case is of a particular type;
we just do not know which type that is.

2.1.2 A Generalization

Throughout the book, we generalize from this simple setup. Whenever we have one causal
variable and one outcome, and both variables are binary (i.e., each can take on two possible
values, 0 or 1), there are only four sets of possible potential outcomes, or “types.” More
generally, for variable 𝑌 , we will use 𝜃𝑌 to capture the unit’s “type”: the way that 𝑌 responds
to its potential causes.7 We, further, add subscripts to denote particular types. Where there
are four possible types, for instance, we use the notation 𝜃𝑌

𝑖𝑗, where the first subscript, 𝑖,
represents the case’s potential outcome when 𝑋 = 0; and the second subscript, 𝑗, is the case’s
potential outcome when 𝑋 = 1.

Adopting this notation, for a causal structure with one binary causal variable and a binary
outcome, the four types can be represented as {𝜃𝑌

10, 𝜃𝑌
01, 𝜃𝑌

00, 𝜃𝑌
11}, as shown in Table 2.2:

7Later, we will refer to these as “nodal types.”
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Table 2.2: Mapping types to potential outcomes: the values 𝑌 takes on if 𝑋 were set at 0 or
1.

a: 𝜃𝑌 = 𝜃𝑌
10 b: 𝜃𝑌 = 𝜃𝑌

01 c: 𝜃𝑌 = 𝜃𝑌
00 d : 𝜃𝑌 = 𝜃𝑌

11

Set 𝑋 = 0 𝑌 (0) = 1 𝑌 (0) = 0 𝑌 (0) = 0 𝑌 (0) = 1
Set 𝑋 = 1 𝑌 (1) = 0 𝑌 (1) = 1 𝑌 (1) = 0 𝑌 (1) = 1

Returning to the matter of inequality and democratization to illustrate, let 𝐼 = 1 represent a
high level of economic inequality and 𝐼 = 0 its absence; let 𝐷 = 1 represent democratization
and 𝐷 = 0 its absence. 𝜃𝐷

10 (or 𝑎) type is a case in which a high level of inequality, if it occurs,
prevents democratization in a country that would otherwise have democratized. So the causal
effect of high inequality in a case, 𝑖, of 𝜃𝐷

10 type is 𝜏𝑖 = −1. A 𝜃𝐷
01 type (or 𝑏 type) is a case in

which high inequality, if it occurs, generates democratization in a country that would otherwise
have remained non-democratic (effect of 𝜏𝑖 = 1). A 𝜃𝐷

00 type (𝑐 type) is a case that will not
democratize regardless of the level of inequality (effect of 𝜏𝑖 = 0); and a 𝜃𝐷

11 type (𝑑 type) is
one that will democratize regardless of the level of inequality (again, effect of 𝜏𝑖 = 0).

In this setting, a causal explanation of a given case outcome amounts to a statement about its
type. The claim that Switzerland’s low level of inequality was a cause of its democratization
is equivalent to saying that Switzerland democratized and is a 𝜃𝐷

10 type. To claim that Benin
democratized because of high inequality is equivalent to saying that Benin democratized and is
a 𝜃𝐷

01 type. To claim, on the other hand, that Malawi democratized for reasons having nothing
to do with its level of economic inequality is to characterize Malawi as a 𝜃𝐷

11 type (which implies
that Malawi would have been democratic no matter what its level of inequality).

Now, let us consider more complex causal relations. Suppose there are two binary causal
variables 𝑋1 and 𝑋2. We can specify any given case’s potential outcomes for each of the
different possible combinations of their causal conditions. There are now four such conditions
since each causal variable may take on 0 or 1 when the other is at 0 or 1.

As for notation, we now need to expand 𝜃’s subscript since we need to represent the value that
𝑌 takes on under each of the four possible combinations of 𝑋1 and 𝑋2 values. This requires
four, rather than two, subscript digits. We map the subscripting for 𝜃ℎ𝑖𝑗𝑘 to potential outcome
notation as shown in Equation Equation 2.1.

𝜃𝑌
ℎ𝑖𝑗𝑘 =

⎧{{
⎨{{⎩

𝑌 (0, 0) = ℎ,
𝑌 (1, 0) = 𝑖,
𝑌 (0, 1) = 𝑗,
𝑌 (1, 1) = 𝑘

(2.1)

where the first argument of 𝑌 (., .) is the value to which 𝑋1 is set and the second is the value
to which 𝑋2 is set.
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Thus, for instance, 𝜃𝑌
0100 means that 𝑌 is 1 if 𝑋1 is set to 1 and 𝑋2 to 0 and is 0 otherwise;

𝜃𝑌
0011 is a type in which 𝑌 = 1 if and only if 𝑋2 = 1; 𝜃𝑌

0001 is a type for which 𝑌 = 0 unless
both 𝑋1 and 𝑋2 are 1.

We now have 16 causal types for this node: 16 different patterns that 𝑌 might display in
response to changes in 𝑋1 and 𝑋2. The full set is represented in Table 2.3, which also illustrates
how we read types off of four-digit subscripts. For instance, the table shows us that for nodal
type 𝜃𝑌

0101, 𝑋1 has a positive causal effect on 𝑌 but 𝑋2 has no effect. On the other hand, for
type 𝜃𝑌

0011, 𝑋2 has a positive effect while 𝑋1 has none.

The 16 types also capture interactions. For instance, for a 𝜃𝑌
0001 type, 𝑋2 has a positive causal

effect if and only if 𝑋1 is 1. For that type, 𝑋1 and 𝑋2 serve as “complements.” For 𝜃𝑌
0111, 𝑋2

has a positive causal effect if and only if 𝑋1 is 0. For that type, 𝑋1 and 𝑋2 are “substitutes.”

Table 2.3: Two binary causes yield 16 causal types.

𝜃𝑌 if 𝑋1 = 0, 𝑋2 = 0 if 𝑋1 = 1, 𝑋2 = 0 if 𝑋1 = 0, 𝑋2 = 1 if 𝑋1 = 1, 𝑋2 = 1
𝜃𝑌

0000 0 0 0 0
𝜃𝑌

1000 1 0 0 0
𝜃𝑌

0100 0 1 0 0
𝜃𝑌

1100 1 1 0 0
𝜃𝑌

0010 0 0 1 0
𝜃𝑌

1010 1 0 1 0
𝜃𝑌

0110 0 1 1 0
𝜃𝑌

1110 1 1 1 0
𝜃𝑌

0001 0 0 0 1
𝜃𝑌

1001 1 0 0 1
𝜃𝑌

0101 0 1 0 1
𝜃𝑌

1101 1 1 0 1
𝜃𝑌

0011 0 0 1 1
𝜃𝑌

1011 1 0 1 1
𝜃𝑌

0111 0 1 1 1
𝜃𝑌

1111 1 1 1 1

This is a rich framework in that it allows for all the possible ways in which a set of multiple
causes can interact with each other. Often, when seeking to explain the outcome in a case,
researchers proceed as though causes are necessarily rival, where 𝑋1 being a cause of 𝑌 im-
plies that 𝑋2 was not. Did Malawi democratize because it was a relatively economically equal
society or because of international pressure to do so? In the counterfactual model, however,
causal relations can be nonrival. If two out of three people vote for an outcome under majority
rule, for example, then both of the two supporters caused the outcome: The outcome would
not have occurred if either supporter’s vote were different. A typological, potential-outcomes
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conceptualization provides a straightforward way of representing this kind of complex causa-
tion.

Because of this complexity, when we say that 𝑋 caused 𝑌 in a given case, we will generally
mean that 𝑋 was a cause, not the (only) cause. Malawi might not have democratized if either
a relatively high level of economic equality or international pressure had been absent. For
most social phenomena that we study, there will be multiple, and sometimes a great many,
difference-makers for any given case outcome.

We will mostly use 𝜃𝑌
𝑖𝑗-style notation in this book to refer to types. We will, however, occa-

sionally revert to the simpler 𝑎, 𝑏, 𝑐, 𝑑 designations when that eases exposition. As types play
a central role in the causal-model framework, we recommend getting comfortable with both
forms of notation before going further.

Using the same framework, we can generalize to structures in which a unit has any number of
causes and also to cases in which causes and outcomes are nonbinary. As one might imagine, the
number of types increases rapidly (very rapidly) as the number of considered causal variables
increases; it also increases rapidly if we allow 𝑋 or 𝑌 to take on more than two possible values.
For example, if there are 𝑛 binary causes of an outcome, then there can be 2(2𝑛) types of this
form: that is, 𝑘 = 2𝑛 combinations of values of causes to consider, and 2𝑘 distinct response
patterns across the possible combinations. If causes and outcomes are ternary instead of binary,
we have 3(3𝑛) causal types.

Nevertheless, the basic principle of representing possible causal relations as patterns of poten-
tial outcomes remains unchanged, at least as long as variables are discrete.

2.1.3 Summaries of Potential Outcomes

So far, we have focused on causal relations at the level of an individual case. Causal relations
at the level of a population are, however, simply a summary of causal relations for cases, and
the same basic ideas can be used. We could, for instance, summarize our beliefs about the
relationship between economic inequality and democratization by saying that we think that
the world is comprised of a mixture of 𝑎, 𝑏, 𝑐, and 𝑑 types, as defined above. We could get
more specific and express a belief about what proportions of cases in the world are of each of
the four types. For instance, we might believe that 𝑎 types and 𝑑 types are quite rare while 𝑏
and 𝑐 types are quite common.

Moreover, our belief about the proportions of 𝑏 (positive effect) and 𝑎 (negative effect) cases
imply a belief about inequality’s average effect on democratization as, in a binary setup, this
quantity is simply the proportion of 𝑏 types minus the proportion of 𝑎 types. Such summaries
allow us to move from the discussion of the cause of a single outcome to discussions of average
effects, a distinction that we take up again in Chapter 4.
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2.2 Causal Models and Directed Acyclic Graphs

So far we have discussed how a single outcome is affected by one or more possible causes.
However, these same ideas can be used to describe more complex relations between collections
of variables—for example, with one variable affecting another directly as well as indirectly via
its impact on a third variable. For instance, 𝑋 might affect 𝑌 directly. But 𝑋 might also
affect 𝑌 by affecting 𝑀 , which in turn affects 𝑌 . In the latter scenario, 𝑀 is a mediator of
𝑋’s effect on 𝑌 .

Potential outcomes tables can be used to describe such relations. However, as causal structures
become more complex—especially, as the number of variables in a domain increases—a causal
model can be a powerful organizing tool. In this section, we show how causal models and
their visual counterparts, directed acyclic graphs (DAGs), can represent substantive beliefs
about counterfactual causal relationships in the world. The key ideas in this section can be
found in many texts (see, e.g., Halpern and Pearl (2005) and Galles and Pearl (1998)), and
we introduce here a set of basic principles that readers will need to keep in mind in order to
follow the argumentation in this book.

As we shift to talking about networks of causal relations between variables, we will also shift
our language. When talking about causal networks, or causal graphs, we will generally refer to
variables as “nodes.” And we will sometimes use familial terms to describe relations between
nodes. For instance, if 𝐴 is a cause of 𝐵, we will refer to 𝐴 as a “parent” of 𝐵, and 𝐵 as
a “child” of 𝐴. Graphically, we have an arrow pointing from the parent to the child. If two
variables have a child in common (both directly affecting the same variable), we refer to them
as “spouses.” We can also say that a variable is a “causal ancestor” of another variable (its
“causal descendant”) if there is a chain of parent-child relations from the “ancestor” to the
“descendant.”

Returning to our running democratization example, suppose now that we have more fully spec-
ified beliefs about how the level of economic inequality can have an effect on whether a country
democratizes. We might believe that inequality (𝐼) affects the likelihood of democratization
(𝐷) by generating demands for redistribution (𝑅), which in turn can cause the mobilization
(𝑀) of lower-income citizens, which in turn can cause democratization (𝐷). We might also
believe that mobilization itself is not just a function of redistributive preferences but also of
the degree of ethnic homogeneity (𝐸), which shapes the capacities of lower-income citizens for
collective action. We visualize this model as a DAG in Figure 2.1. In this model, 𝑅 is a parent
of 𝑀 . 𝐼 is an ancestor of 𝑀 but not its parent. 𝑅 and 𝐸 are spouses, and 𝑀 is their child
(i.e., mobilization depends on both redistributive preferences and ethnic demography).

Fundamentally, we treat causal models like this as formal representations of beliefs about how
the world works—or, more specifically, about causal relations within a given domain. We
might use a causal model to capture our own beliefs, a working simplification of our beliefs, or
a set of potential beliefs that one might hold. The formalization of prior beliefs in the form of
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A model of inequality's effect on democratization

Figure 2.1: A simple causal model in which high inequality (𝐼) affects democratization (𝐷) via
redistributive demands (𝑅) and mass mobilization (𝑀) which is also a function
of ethnic homogeneity (𝐸). Arrows show relations of causal dependence between
variables.
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a causal model is the starting point for research design and inference in this book’s analytic
framework.

We now provide a formal definition of a causal model (Definition 2.1) as used in this book,
and then unpack the definition.

Definition 2.1. Causal Model

A “causal model” is:

1.1: An ordered list of 𝑛 endogenous nodes, 𝒱 = (𝑉 1, 𝑉 2, … , 𝑉 𝑛), with a specification of a
range for each of them

1.2: A list of 𝑛 exogenous nodes, Θ = (𝜃1, 𝜃2, … , 𝜃𝑛)
2: A list of 𝑛 functions ℱ = (𝑓1, 𝑓2, … , 𝑓𝑛), one for each element of 𝒱 such that each 𝑓 𝑖 takes
as arguments 𝜃𝑖 as well as elements of 𝒱 that are prior to 𝑉 𝑖 in the ordering

and

3: A probability distribution over Θ

This definition corresponds to Pearl’s definition of a “probabilistic causal model” (Pearl (2009),
Definition 7.1.6). Also following Pearl, we use the term “structural causal model” to refer to a
model that specifies parts 1.1, 1.2, and 2 of this definition but without part 3 (See e.g., Pearl
(2009) Definition 7.1.1).8

The three components of a causal model then are (1) the nodes—that is, the set of variables
we are focused on and how they are defined (2) the causal functions—which characterize
which nodes are caused by which other nodes and how, and (3) probability distributions over
unexplained elements of a model (in our framework, the 𝜃 nodes). We discuss each in turn.

2.2.1 The Nodes

The first component of a causal model is the set of variables (nodes) across which the model
characterizes causal relations.

We have two sorts of variables: the named, “endogenous,” nodes, 𝒱, and the unnamed “exoge-
nous” nodes, Θ.9

On the graph (DAG) in Figure 2.1, the five endogenous nodes are lettered. All these endoge-
nous nodes have an arrow pointing into them indicating that the node at the end of the arrow
is (possibly) caused in part by (or, “depends on”) the node at the beginning of the arrow.

8We note however that this terminology is not always used consistently in the literature and the term “structural
causal model” is sometimes used coextensively with what we have defined above as a causal model.

9In many treatments, 𝒰 is used for the exogenous nodes. We use Θ to denote these unobserved, unspecified
influences in order to emphasize their particular role, as direct objects of interest in causal inquiry.
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Nodes 𝑅, 𝑀 , and 𝐷 are all obviously endogenous because they depend on other named vari-
ables. 𝐼 and 𝐸 are not endogenous to other nodes in 𝒱, but we still call them endogenous
because they depend on other nodes in the model, specifically on nodes in Θ. We will use the
term “root nodes” to indicate nodes like this that are in 𝒱 but are not endogenous to other
nodes in 𝒱.

Our definition specified that the endogenous nodes should be ordered. We can in fact specify
different orderings of nodes in this example. For instance we could have the ordering <
𝐸, 𝐼, 𝑅, 𝑀, 𝐷 >, or the ordering < 𝐼, 𝑅, 𝐸, 𝑀, 𝐷 > or even < 𝐼, 𝐸, 𝑅, 𝑀, 𝐷 >. The ordering
matters only to the extent that it constrains the causal functions: 𝑓𝑗 can take as arguments
only 𝜃𝑗 and elements of 𝒱 that come before 𝑗 in the ordering. In practice, this prevents us
from having a variable that is both a cause and a consequence of another variable.

In specifying these nodes, we also need to specify the ranges over which they can vary. We
might specify, for instance, that all the endogenous nodes in the model are binary, taking on
the values 0 or 1. We could, alternatively, define a set of categories across which a node ranges
or allow a node to take on any real number value or any value between a set of bounds.

The exogenous nodes, Θ, require a little more explanation since they do not describe substan-
tive nodes. Five such exogenous nodes are shown on the graph, one for each endogenous node
(note though, very frequently we do not include the exogenous nodes explicitly when we draw
a graph, but we should still imagine them there, pointing into each endogenous node).

In our discussion above, we introduced 𝜃 notation for representing types. Here, we simply
build these types into a causal model. We imagine a 𝜃 term pointing into every node (whether
explicitly represented on the graph or not). We can think of 𝜃 terms as unobservable and
unspecified inputs into a causal system. These might include random processes (noise) or
contextual features that we are unable to identify or do not understand, but that both affect
outcomes and condition the effects of other, specified variables on outcomes.

As we will show, consistent with our discussion of potential outcomes and types, in discrete
settings we can think of 𝜃 nodes as capturing the functional relations between variables and
as such as, being quantities of direct interest for causal inquiry. We more fully develop this
point—returning to the notion of 𝜃 terms as receptacles for causal effects—below.

2.2.2 The Functions

Next, we need to specify our beliefs about the causal relations among the nodes in our model.
How is the value of one node affected by, and how does it affect, the values of others? For each
endogenous node—each node influenced by others in the model—we need to express beliefs
about how its value is affected by its parents (its immediate causes). We do this using a
function 𝑓 𝑖 for each node 𝑖. We will usually refer to these functions as “causal functions”
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to highlight the fact that they capture causal relations between nodes.10 Critically, these
functions contain all the information needed to construct potential outcomes (see Remark 2.1
on these connections).

We can think in a qualitative and quantitative way about how one variable is affected by others.
Qualitatively, if a variable 𝑖 depends on the value of another variable 𝑗 (given other variables
prior to 𝑖 in the ordering), then that variable 𝑗 enters as an argument in 𝑓 𝑖. In that case, 𝑗
is a parent to 𝑖. Whether a variable is a parent or not depends on the nodes in the model: if
we think 𝐴 causes 𝐵 and 𝐵 causes 𝐶 and 𝐴 causes 𝐶 only via 𝐵 then 𝐴 is not a parent of 𝐶
in a model that includes 𝐵 among the endogenous nodes; but 𝐴 would be a parent of 𝐶 in a
model that does not include 𝐵.

Graphically, we can represent all such relations between variables and their parents with arrows
and when we represent the relations in a causal model in this way we get a DAG—where the
acyclicality and directedness are guaranteed by the ordering requirements we impose when we
define a causal model.

Thus, the DAG already represents a critical part of our model: The arrows, or directed edges,
tell us which nodes we believe may be direct causal inputs into other nodes. So, for instance,
we believe that democratization (𝐷) is determined jointly by mobilization (𝑀) and some
exogenous, unspecified factor (or set of factors), 𝜃𝐷. As we have said, we can think of 𝜃𝐷

as all of the other influences on democratization, besides mobilization, that we either do not
know of or have decided not to explicitly include in the model. We believe, likewise, that
𝑀 is determined by 𝐼 and an unspecified exogenous factor (or set of factors), 𝜃𝑀 . And we
are conceptualizing inequality (𝐼) and ethnic heterogeneity (𝐸) as shaped solely by factors
exogenous to the model, captured by 𝜃𝐼 and 𝜃𝐸, respectively.

Beyond the qualitative beliefs captured by the arrows in a DAG, we can express more specific
quantitative beliefs about causal relations in the form of a causal function. A function specifies
how the value that one node takes is determined by the values that other nodes—its parents—
take on. Specifying a function means writing down whatever general or theoretical knowledge
we have about the direct causal relations between nodes.

We can specify this relationship in a vast variety of ways. It is useful, however, to distin-
guish broadly between parametric and nonparametric approaches. We take a nonparametric
approach in this book—this is where our types come back in—but it is helpful to juxtapose
that approach with a parametric approach to causal functions.

10These causal functions relate to “structural equations” in a simple way: structural equations place an en-
dogenous variable on the left hand side and the causal function together with the parents on the right hand
side. Thus for example 𝑌 = 𝑓𝑌 (pa(𝑌 ), 𝜃𝑌 ) is a structural equation, as is 𝑌 = 𝑋 + 𝜃𝑌 where implicitly
𝑓𝑌 (pa(𝑌 ), 𝜃𝑌 ) = 𝑋 + 𝜃𝑌 .”
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2.2.2.1 Parametric Approaches

A parametric approach specifies a functional form that relates parents to children. For instance,
we might model one node as a linear function of another and write 𝐷 = 𝛼 + 𝛽𝑀 . Here, 𝛽
is a parameter that we may not know the value of at the outset of a study but about which
we wish to learn. If we believe 𝐷 to be linearly affected by 𝑀 but also subject to forces
that we do not yet understand and have not yet specified in our theory, then we might write:
𝐷 = 𝑓𝐷(𝑀, 𝜃𝐷) = 𝛼 + 𝛽𝑀 + 𝜃𝐷. (This functional form may be familiar from its use in linear
regressions.) In this function, 𝛼 and 𝛽 might be the parameters of interest—features of the
world that we seek to learn about—with 𝜃𝐷 treated as merely a random disturbance around
the linear relationship.

We can also write down functions in which the relations between nodes are left wholly or
partially unspecified, for instance, governed by parameters with unknown values. Consider,
for instance the function 𝐷 = 𝛽𝑀𝜃𝐷 . Here, 𝐷 and 𝑀 are linearly related if 𝜃𝐷 = 1. (If 𝜃𝐷 = 1,
then the function just reduces to the linear form, 𝐷 = 𝛽𝑀 .) However, if 𝜃𝐷 is not equal to 1,
then 𝑀 ’s effect on 𝐷 can be non-linear. For instance, if 𝜃𝐷 lies between 0 and 1, then 𝑀 will
have a diminishing marginal effect on 𝐷. Here, 𝜃𝐷 itself would likely be a quantity of interest
to the researcher since it conditions the causal relationship between the other two nodes.

The larger point is that functions can be written to be quite specific or extremely general,
depending on the state of prior knowledge about the phenomenon under investigation. The
use of a structural model does not require precise knowledge of specific causal relations, even
of the functional forms through which two nodes are related.

2.2.2.2 The Non-parametric Approach

With discrete (non-continuous) data, causal functions can take fully nonparametric form. That
is, nonparametric functions can allow for any possible relation between parents and children,
not just those that can be expressed in an equation.

We use a nonparametric framework for most of this book and thus spend some time developing
the approach here.

We begin by returning to the concept of types. Drawing on our original four types and the
democratization example from earlier in this chapter, we know that we can fully specify causal
relations between a binary 𝑀 and a binary 𝐷 using the concept of a type, represented by
𝜃𝐷. We think of 𝜃𝐷 as akin to a variable that can take on different values in different cases,
corresponding to the different possible types. Specifically, we allow 𝜃𝐷 to range across the four
possible values (or types) {𝜃𝐷

10, 𝜃𝐷
01, 𝜃𝐷

00, 𝜃𝐷
11}. For instance, 𝜃𝐷

10 represents a negative causal
effect of 𝑀 on 𝐷 while 𝜃𝐷

00 represents 𝐷 remaining at 0 regardless of 𝑀 .
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So the value that 𝜃𝐷 takes on in a case governs the causal relationship between 𝑀 and 𝐷. Put
differently, 𝜃𝐷 represents the nonparametric function that relates 𝑀 to 𝐷. We can formally
specify 𝐷’s behavior as a function of 𝑀 and 𝜃𝐷 in the following way:

𝑓𝐷(𝑀, 𝜃𝐷
𝑖𝑗) = { 𝑖 if 𝑀 = 0

𝑗 if 𝑀 = 1

Here, we are saying that 𝐷’s value in a case depends on two things: the value of 𝑀 and the
case’s type, defining how 𝐷 responds to 𝑀 . We are then saying, more specifically, how 𝐷’s
value is given by the subscripts on 𝜃 once we know 𝑀 ’s value: if 𝑀 = 0, then 𝐷 is equal to
the subscript 𝑖; If 𝑀 = 1, then 𝐷 is equal to 𝑗. Note that 𝜃𝐷’s possible values range over all
possible ways in which D’s value can relate to M’s.

How should we think about what kind of thing 𝜃𝐷 is, in a more substantive sense? It is
helpful to think of 𝜃𝐷 as an unknown and possibly random factor that conditions the effect
of mobilization on democratization, determining whether 𝑀 has a negative effect, a positive
effect, no effect with democratization never occurring, or no effect with democratization bound
to occur regardless of mobilization. A little more generally it can be thought of as describing
a “stratum”—a grouping together of units that may differ in innumerable ways but that,
nevertheless, respond in the same way at the node in question given values of other nodes
in the model (Frangakis and Rubin 2002). Importantly, while we might think of 𝜃𝐷 as an
unknown or random quantity, in this framework 𝜃𝐷 should not be thought of as a nuisance—
as “noise” that we would like to get rid of. Rather, under this nonparametric approach, 𝜃
terms are the very quantities that we want to learn about: We want to know whether 𝑀 likely
had a positive, negative, or no effect on 𝐷. We elaborate on this point in Chapter 4.

More generally, we can use 𝜃 terms to capture causal functions involving any number of parent
nodes. Every substantively defined node, 𝐽 , in a graph can be thought of as having a 𝜃𝐽 term
pointing into it, and the (unobservable) value of 𝜃𝐽 provides the mapping from 𝐽 ’s parents (if
it has any) to the value of 𝐽 .

The ranges of each 𝜃𝐽 node depend on the number of parents 𝐽 has, as well as the ranges of
𝐽 and its parents. Thus, as described in Section 2.1.2, binary nodes with 𝑛 parents can take
on 22𝑛 values. Each value corresponds to a unique combination of 0s and 1s for each of the 2𝑛

combinations of values that the nodes’ parents can have.

Applied to the binary nodes in Figure 2.1, 𝜃𝐽 ranges as follows:

• Nodes with no parents: For a parentless node, like 𝐼 or 𝐸, 𝜃𝐽 represents an external
“assignment” process that can take on one of two values. If 𝜃𝐽 = 𝜃𝐽

0 , we simply mean
that 𝐽 has been “assigned” to 0, while a value of 𝜃𝐽

1 means that 𝐽 has been assigned
to 1. For instance, 𝜃𝐼

0 describes a case in which exogenous forces have generated low
inequality.
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• Binary nodes with one binary parent: For endogenous node 𝑅, with only one parent
(𝐼), 𝜃𝑅 takes on one of the four values of the form 𝜃𝑅

𝑖𝑗 (our four original types, 𝜃𝑅
10, 𝜃𝑅

01,
etc.).

• Binary nodes with two binary parents: 𝑀 has two parent nodes. Thus, 𝜃𝑀 will
take on a possible 16 values of the form 𝜃𝑀

ℎ𝑖𝑗𝑘 (e.g., 𝜃𝑀
0000, 𝜃𝑀

0001, etc.), using the syntax
detailed earlier in this chapter and unpacked in Table 2.3.

Nodal types and causal types. So far, we have been talking about types operating at
specific nodes. For instance, we can think of the unit of Malawi as having a 𝜃𝐷 value—the
type governing how 𝐷 responds to 𝑀 in this case. Let’s call this Malawi’s nodal causal type,
or simply nodal type, for 𝐷. But we can also conceptualize the full collection of Malawi’s
nodal types: the nodal types governing causal effects in Malawi for all nodes in the model.
This collection would include Malawi’s nodal type values for 𝜃𝐼 , 𝜃𝐸, 𝜃𝑅, 𝜃𝑀 , and 𝜃𝐷. We refer
to the collection of nodal types across all nodes for a given unit (i.e., a case) as the case’s unit
causal type, or simply causal type. We denote a causal type by the vector 𝜃, the elements of
which are all of the nodal types in a given model (𝜃𝐼 , 𝜃𝐸, etc.). For analytic applications later
in the book, this distinction between nodal types and causal types will become important.

We will sometimes refer to a unit’s causal type—the values of 𝜃—as a unit’s context. This is
because 𝜃 captures all exogenous forces acting on a unit. This includes the assignment process
driving the model’s exogenous nodes (in our example, 𝜃𝐼 and 𝜃𝐸) as well as all contextual
factors and any idiosyncratic unit level features that shape causal relations between nodes
(𝜃𝑅, 𝜃𝑀 , and 𝜃𝐷). Put differently, 𝜃 captures both how a unit reacts to situations and which
situations it is reacting to. Table 2.4 summarizes the difference between nodal types and causal
types and their associated notation.

If we knew a unit’s causal type—all nodal types operating in the unit, for all nodes—then
we would know everything there is to know about that unit. We would know the value of
all exogenous nodes as well as how those values cascade through the model to determine the
values of all endogenous nodes. So a unit’s causal type fully specifies all nodal values. More
than that, because the causal type contains all causal information about a unit, it also tells us
what values every endogenous node would take on under counterfactual values of other nodes.
Of course, causal types, like nodal types, are fundamentally unobservable quantities. But (as
we discuss later in the book) they are quantities that we will seek to draw inferences about
from observable data.

Table 2.4: Nodal types, causal types.

Term Symbol Meaning
Nodal type 𝜃𝐽 The way that node 𝐽 responds to the values of its

parents. Example: 𝜃𝑌
10: 𝑌 takes the value 1 if

𝑋 = 0 and 0 if 𝑋 = 1.
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Term Symbol Meaning
Causal type 𝜃 A causal type is a concatenation of nodal types,

one for each node. Example: (𝜃𝑋
0 , 𝜃𝑌

00) is a causal
type that has 𝑋 = 0 and that has 𝑌 = 0 no matter

what the value of 𝑋.

A few important aspects of causal functions are worth highlighting.

1. These functions express causal beliefs. When we write 𝐷 = 𝑓𝐷(𝑀, 𝜃𝑀) = 𝛽𝑀 as a
function, we do not just mean that we believe the values of 𝑀 and 𝐷 in the world to be
linearly related. We mean that we believe that the value of 𝑀 determines the value of
𝐷 through this linear function. Functions are, in this sense, directional statements, with
causes on the right-hand side and an outcome on the left.

2. The collection of simple functions that map from the values of parents of a given node
to the values of that node are sufficient to represent potentially complex webs of causal
relations. For each node, we do not need to think through entire sequences of causation
that might precede it. We need only specify how we believe it to be affected by its
parents—that is to say, those nodes pointing directly into it. Our outcome of interest,
𝐷, may be shaped by multiple, long chains of causality. To theorize how 𝐷 is generated,
however, we write down how we believe 𝐷 is shaped by its parent—its direct cause, 𝑀 .
We then, separately, express a belief about how 𝑀 is shaped by its parents, 𝑅 and 𝐸.
A node’s function must include as inputs all, and only, those nodes that point directly
into that node.11

3. As in the general potential-outcomes framework, all relations in a causal model are
conceptualized as deterministic at the case level. Yet, there is not as much at stake here
as one might think at first; by this we simply mean that a node’s value is determined by
the values of its parents along with any stochastic or unknown components. We express
uncertainty about causal relations, however, as unknown parameters, the nodal types.

Remark 2.1. Potential outcomes and causal functions

We sometimes describe the values of outcomes using causal functions and sometimes we use
potential outcomes notation. These two representations relate to each other in a simple way.

Causal functions are part of the definition of causal models. A causal function (such as
𝑓𝑌 ) takes as arguments only the parents of a node (along with the nodal type). It can only
be evaluated if values for the parents of the node are provided. For instance, say 𝑌 depends
directly on 𝑋 and indirectly on 𝑋 via 𝑀 . We can then calculate the value that 𝑌 takes when

11The set of a node’s parents is required to be minimal in the sense that a node is not included among the
parents if, given the other parents, the child does not depend on it in any state that arises with positive
probability.
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𝑋 = 1 and 𝑀 = 1 via 𝑓𝑌 (𝑋 = 1, 𝑀 = 1, 𝜃𝑌 ). But we cannot use 𝑓𝑌 alone to assess the value
of 𝑌 when 𝑋 = 1 but the value of 𝑀 is unspecified. The key point is that the number of
arguments in a causal function is fixed and limited to the parents plus the nodal type.

When we use potential outcomes notation (like 𝑌 (𝑋 = 1)), we describe outcomes given the
values of other nodes that may or may not be the parents of the node of interest. Thus when we
write 𝑌 (𝑋 = 1), we are not specifying 𝑀 , only 𝑋. The interpretation is that we are requesting
the value of 𝑌 when 𝑋 is set to 1 and 𝑀 takes on whatever value it takes on in that condition.
Similarly, 𝑌 (𝑀 = 1) asks what value 𝑌 takes on when 𝑀 is set to 1 but 𝑋 takes on whatever
value it takes on naturally. We can also ask about these values given other conditions that
might obtain but were not controlled. Thus, Pr(𝑌 (𝑀 = 1) = 1|𝑋 = 1) is the probability that
𝑌 = 1 for cases in which 𝑀 has been set to 1 and 𝑋 just happens to be 1.

These two ways of describing outcomes are related since the potential outcomes quantities can
be derived from the causal functions. Thus, in the example above in which 𝑋 has a direct
and indirect effect on 𝑌 via 𝑀 , we can calculate 𝑌 (𝑋 = 1)—interpreted as the value 𝑌 takes
when 𝑋 is set to 1 and 𝑀 takes whatever value it would take naturally (given 𝑋 is set to 1)—
using a causal function nested within a causal function: 𝑓𝑌 (𝑋 = 1, 𝑀 = 𝑓𝑀(𝑋 = 1, 𝜃𝑀), 𝜃𝑌 ).
Similarly, in a 𝑋 → 𝑀 → 𝑌 chain model, we can write 𝑌 (𝑋 = 1) even though 𝑋 is not a
parent of 𝑌 , and calculate its value via 𝑌 (𝑋 = 1) = 𝑓𝑌 (𝑀 = 𝑓𝑀(𝑋 = 1, 𝜃𝑀), 𝑌 ).

2.2.3 The Distributions

Putting collections of nodes and causal functions that relate these to each other together
gives us what we call a structural causal model. A structural causal model expresses our
beliefs about the skeletal structure of causal relations in a domain: It tells us which nodes are
exogenous (entirely caused by things outside the model), which nodes are endogenous (caused
by exogenous nodes or other endogenous nodes), and which nodes can have effects on which
other nodes.

But this only takes us so far in inscribing our causal beliefs about the world. In particular,
we have not said anything here about how likely different sets of conditions are, what values
different nodes–whether endogenous or exogenous—are likely to take on, or the kinds of causal
effects we expect most commonly to operate between linked nodes on the graph.

To incorporate these features we need two things. We need to include probability distributions
over exogenous nodes. And we need to understand how distributions over exogenous nodes
imply distributions of the values—actual or counterfactual—of endogenous nodes.

2.2.3.1 Probability Distributions over Exogenous Nodes

When we add information on the distribution of exogenous nodes, we move from having a
structural causal model to having a probabilistic causal model, or simply a causal model, as we
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have defined it above. These probability distributions may represent our “priors”—our beliefs
before seeing any data—or they may represent beliefs having seen data, our “posteriors.”

Intuitively, it can be helpful to think of the structural model as providing a collection of rules
or mechanisms that can produce different outcomes depending on the context, and to think
of the collection of nodal types for a unit—that unit’s causal type—as capturing the context
itself. Indeed, a set of realized values on all exogenous nodes is sometimes referred to simply
as the context. To understand anything about actual outcomes we first need to understand
the context.

Thus, for instance, a structural causal model consistent with Figure 2.1 stipulates that de-
mocratization may be affected by mobilization, that mobilization may be affected by ethnic
homogeneity and redistributive demands, and that redistributive demands may be affected by
the level of inequality. But it says nothing about the context: the values that we think the
exogenous nodes tend to take on in the world. And it says nothing about how likely (or how
common) we think different contexts are. We have not said anything, that is, about how com-
mon high inequality is across the relevant domain of cases or how common ethnic homogeneity
is. Put differently, we have said nothing about the distribution of 𝜃𝐼 or of 𝜃𝐸. Similarly, we
have said nothing yet about the nature of the causal effects in the model: for instance, about
how commonly mobilization has positive, negative, or null effects of democratization; about
how commonly redistributive demands (𝑅) and ethnic homogeneity (𝐸) have different possible
joint causal effects on 𝑀 ; or about how commonly inequality (𝐼) has different possible effects
on redistributive demands (𝑅). That is, we have said nothing about the distribution of 𝜃𝐷,
𝜃𝑀 , or 𝜃𝑅 values in the world.

We make progress by specifying probability distributions over the model’s nodal types—its 𝜃𝐽

terms, specifying Pr(𝜃𝐽 = 𝜃𝐽
𝑘 ), for each node 𝐽 and each nodal type potentially operating at 𝐽

(i.e., each possible value of 𝜃𝐽). At the case level, we can think of this probability distribution
as a statement about our beliefs about the unit’s type or about the context. If we think in
terms of populations we might think in terms of the proportion of units in the population of
interest that have different values for 𝜃𝐽—which we will call 𝜆𝐽—and then think of the unit’s
type as a draw from this population. (We may also need to specify beliefs about how cases
are drawn from the population.)

For instance, our structural causal model might tell us that 𝐸 and 𝑅 can jointly affect 𝑀 .
We might, then, add to this a belief about what kinds of effects among these variables are
most common. For instance, we might believe that redistribution rarely has a positive effect
on mobilization when ethnic homogeneity is low. Well, there are four specific nodal types in
which 𝑅 has a positive effect on 𝑀 , when 𝐸 = 0: 𝜃𝑀

0010, 𝜃𝑀
0110, 𝜃𝑀

0111, and 𝜃𝑀
0011. (Look back

at Table 2.3 to confirm this for yourself, substituting 𝐸 for 𝑋1 and 𝑅 for 𝑋2.) Thus, we can
express our belief as a probability distribution over the possible nodal types for 𝑀 , 𝜃𝑀 , in
which we place a relatively low probability on 𝜃𝑀

0010, 𝜃𝑀
0110, 𝜃𝑀

0111, and 𝜃𝑀
0011, as compared to

𝜃𝑀 ’s other possible values. This is akin to saying that we think that these four nodal types
occur in a relatively small share of units in the population of interest.
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Of course, when we are thinking about populations we will usually be uncertain about these
kinds of beliefs. We can then build uncertainty into our beliefs about the “shares” of different
nodal types in the population. We do this by thinking of the shares as nodes in their own
right and specifying a probability distribution over these shares (see e.g., Chickering and Pearl
(1996)). For instance, rather than stipulating that 𝜆𝐸

1 (the share of cases that have 𝜃𝐸
1 ) is

exactly 0.1, we can specify a distribution over shares, centered on a low value but with our
degree of uncertainty captured by that distribution’s variance.12 Similarly, we can specify
a distribution over the shares of 𝜃𝑀 types, 𝜆𝑀 . In consequence, our uncertainty about a
unit’s type might reflect uncertainty about the features of the unit given the population, or
uncertainty about the population itself.

In the default setup, we assume that each 𝜃 term (𝜃𝐼 , 𝜃𝐸, 𝜃𝑅, etc.) is generated independently
of the others. So, for instance, the probability that 𝐼 has a positive effect on 𝑅 in a case bears
no relationship to the probability that 𝑀 has a positive effect on 𝐷. Or, put differently, those
cases with a positive 𝐼 → 𝑅 effect are no more or less likely to have a positive 𝑀 → 𝐷 effect
than are those cases without a positive 𝐼 → 𝑅 effect. This independence feature is critical
for allowing a causal graph to reveal relationships among nodes in a model (see, in particular,
our discussion of conditional independence below). See Remark 2.2 on the “Markov condition”
that relates the structure of the graph to the types of independence statements implied by the
graph (Spirtes et al. 2000).

One subtlety is that violations of independence can arise even if we are certain that 𝜃𝑋 and 𝜃𝑌

are drawn independently from different distributions. Specifically, it is possible for our beliefs
about the distributions from which 𝑋 and 𝑌 are drawn not to be independent even if we believe
that the draws are independent. Consider an example. We might have every reason to believe
that 𝑋 is randomized and so think that 𝜃𝑋 is independent of 𝜃𝑌 —so there is no confounding
between the two. However, we might be uncertain about the assignment probability (a belief
about 𝜆𝑋). Moreover, we might believe that a world in which the probability of assignment to
𝑋 = 1 is high is also a world in which treatment effects are strong (a belief about 𝜆𝑌 ), and that
a world with low assignment probabilities is also likely a world of weak treatment effects. In
this situation, even though we are sure there is randomization of the treatment—and, indeed,
conditional on the true values of (𝜆𝑋, 𝜆𝑌 ) we know that 𝜃𝑋 and 𝜆𝑌 are independent—the
value of 𝜃𝑋 is related to the value of 𝜃𝑌 in our beliefs. Specifically, when we learn 𝑋 = 1 for a
random case we think it is more likely we are in the high assignment-large effects world. Thus,
independence is violated.13

If the assumption of independence cannot be maintained, then the model might have to be
enriched to ensure independence between exogenous nodes. Otherwise, nonindependence has
to be taken into account when doing analysis.14 Graphically we represent such failures of
independence by using curved two headed arrows. More on this in Section 2.3.1.

12We say more about these distributions when we turn to a discussion of Bayesianism in Chapter 5.
13For more on violations of independence arising from correlations in beliefs about population quantities, see

Section 9.5.3.
14In the CausalQueries software package, we can specify nodal types as having joint distributions.
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2.2.3.2 Induced Distributions over Endogenous Nodes

When we provide a distribution over exogenous nodes we have all we need to calculate a
distribution over endogenous nodes since these nodes are all ultimately functions of exogenous
nodes.

Figuring out the induced probability distribution of endogenous nodes is conceptually not so
hard. We can imagine calculating these distributions by first looking at root nodes. For a
root note 𝑉 1, say, the distribution of 𝑉 1, depends only on 𝜃1. If we figure out what values of
𝜃1 give rise to a particular value of 𝑉 1, say 𝑉 1 = 𝑣1 when 𝜃1 = 𝜃1

1, then the probability that
𝑉 1 = 𝑣1 is just the probability that 𝜃1 = 𝜃1

1. For non-root nodes, we proceed similarly except
that we first calculate the probability of different possible values for their parents. For 𝑉 2, for
instance, we assess what values of 𝜃2 and 𝑉 2’s parent, 𝑉 1 say, give rise to particular values of
𝑉 2, and then deduce from the causal function for what set of values of 𝜃1 and 𝜃2 we would
observe 𝑉 2 = 𝑣2, say. Then we have enough to figure out the probability that 𝑉 2 = 𝑣2 from
the joint probability of 𝜃1 and 𝜃2. And so on for subsequent nodes in the ordering.

Taking this one step further, it’s not hard to see that from the distribution of the exogenous
nodes, we have enough to determine not just what outcomes arise in a given context but also
what would arise if we intervened in that context. In that case we proceed as before, but now
the probability of a node on which we have intervened is known, not inferred from Pr(𝜃).

2.2.4 2.2.4 Conditional Independence

Importantly, even if we assume that the exogenous nodes in a model are independently dis-
tributed, we are not likely to think that the endogenous ones are. In fact, insofar as one
node depends on another, it is obvious that they are not. As a result, the induced probability
distribution over endogenous variables might be quite complicated.

Fortunately, however, the structure provided by a causal model makes it possible to use state-
ments about “conditional independence” (see Definition 2.2) to generate relatively simple
statements about the joint probability of all nodes.

Definition 2.2. Conditional Independence

Nodes 𝐴 and 𝐵 are “conditionally independent” given 𝐶 if Pr(𝑎|𝑏, 𝑐) = Pr(𝑎|𝑐) for all
values of 𝑎, 𝑏, and 𝑐.

So let’s unpack the idea of conditional independence. The key idea is that two variables are
independent when knowing something about one is not helpful for making inferences about the
other (we get to the “conditional” part in a moment). Conversely, when there is a dependence
between two nodes, then knowing something about one of them is informative about the
other.
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These relations of dependence and independence between nodes can result from the structure
of causal relations. Intuitively, we can usefully think of dependencies as arising from the ways
information flows along causal pathways. For instance, in Figure 2.1, the arrow running from
𝐼 to 𝑅 means that 𝑅 is causally dependent on 𝐼 . This dependence, moreover, implies that
if we know something about 𝐼 , then we expect to know something about 𝑅. Concretely, we
might expect 𝐼 ’s and 𝑅’s values to be correlated with each other.15

The graph in Figure 2.1 thus implies that, if we measured redistributive preferences, we would
also be in a better position to infer the level of inequality, and vice versa. Similarly, 𝐼 and 𝑀
are linked in a relationship of dependence, one that is mediated by 𝑅. Since inequality can
affect mobilization (through 𝑅), knowing the level of inequality would allow us to improve our
estimate of the level of mobilization—and vice versa.

In contrast, consider 𝐼 and 𝐸, which in this model are independent of one another. In this
model these two nodes have no common ancestor, which means that the forces that set a
case’s level of inequality are (assumed to be) independent of the forces that determine its level
of ethnic homogeneity. So learning the level of inequality in a case, according to this model,
would give us no information whatsoever about the case’s degree of ethnic homogeneity and
vice-versa.

So dependencies between nodes can arise from those nodes lying along a causal chain. Yet
they can also arise from nodes having common causes (or ancestors). Consider Figure 2.2.
Here, we are indicating that war (𝑊 ) can cause both excess deaths (𝐷) and price inflation (𝑃 ).
Casualties and inflation may then be correlated with one another because of their shared cause.
If we learn that there have been military casualties, this information will lead us to think it
more likely that there is also war and, in turn, that there is price inflation (and vice versa).
When two outcomes have a common (proximate or distant) cause, observing one outcome
might lead us to believe it more likely that the other outcome has also occurred.

Now let’s turn to the “conditional” part. The key idea here is that sometimes what we learn
from an observation depends on what we already know. An everyday example can help us wrap
our minds around this intuition. Suppose that, on a winter’s day, I want to know whether
the boiler in my basement, which provides steam to the heating system, is working properly.
I usually figure out if the boiler is working by reading the temperature on the thermometer
on my living room wall: This is because I believe that the boiler’s operation causes the room
temperature to rise (implying 𝐵 → 𝑇 ). Under this causal dependency, the temperature in the
living room is generally informative about the boiler’s operation. If the room is warm, this
makes me believe that the boiler is probably operating; if the room is cold, then I come to
think it’s less likely that the boiler is running. (Similarly, if I go down to the basement and

15Though we sometimes use “correlated” and “uncorrelated” to describe dependence and independence between
variables, independence is in fact a stronger idea than uncorrelated. Two variables might be uncorrelated
but still not be independent of each other. For instance, imagine 𝑋 is evenly distributed over {0, 1, 2} and
𝑌 = 1 if and only if 𝑋 = 1. Then 𝑋 and 𝑌 will be uncorrelated but you can nevertheless learn a lot
(everything!) about 𝑌 from learning about 𝑋.
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A model of war's effect on casualties and prices

Figure 2.2: A simple causal model in which war (𝑊 ) affects both excess deaths (𝐷) and price
inflation (𝑃 ).

can see whether the boiler is fired up, this will shape my expectations about how warm the
living room is.)

However, I also believe that the boiler affects the room’s temperature through a change in the
temperature of the radiator (𝐵 → 𝑅 → 𝑇 ), and that this is the only way in which the boiler
can affect the room temperature. So suppose that, before reading the thermometer on the
wall, I touch the radiator and feel that it is hot. The radiator’s temperature has, of course,
given me information about the boiler’s operation—since I believe that the boiler’s operation
has an effect on the radiator’s temperature (𝐵 → 𝑅). If the radiator is hot, I judge that
the boiler is probably running. But now, having already observed the radiator’s temperature,
can I learn anything further about whether the boiler is operating by taking a reading from
the thermometer on the wall? No, I cannot. Everything I could possibly learn about the
boiler’s status from gauging the room’s temperature I have already learned from touching the
radiator—since the boiler’s effect on the room’s temperature runs entirely through the radiator.
One way to think about this is that, by observing the radiator’s temperature, we have fully
intercepted, or “blocked”, the flow of information from the boiler to the wall thermometer.

In sum, the room’s temperature can be informative about the boiler, but whether it is infor-
mative hinges on whether we already know if the radiator is hot. If we know 𝑅, then 𝐵 and
𝑇 are uninformative about one another. Formally, we say that 𝐵 and 𝑇 are conditionally
independent given 𝑅.

Turning back to Figure 2.1, imagine that we already knew the level of redistributive preferences.
Would we then be in a position to learn about the level of inequality by observing the level
of mobilization? According to this DAG, we would not. This is because 𝑅, which we already
know, blocks the flow of information between 𝐼 and 𝑀 . Since the causal link—and, hence,
the flow of information—between 𝐼 and 𝑀 runs through 𝑅, and we already know 𝑅, there
is nothing left to be learned about 𝐼 by also observing 𝑀 . Anything we could have learned
about inequality by observing mobilization is already captured by the level of redistributive
preferences, which we have already seen. We can express this idea by saying that 𝐼 and 𝑀 are
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conditionally independent given 𝑅. That is, observing 𝑅 makes 𝐼 and 𝑀 independent of one
another.

Remark 2.2. The Markov Condition

The assumptions that no node is its own descendant and that the 𝜃 terms are generated
independently make the model “Markovian,” and the parents of a given node are “Markovian
parents.”

Knowing the set of Markovian parents allows us to write relatively simple factorizations of a
joint probability distribution, exploiting the fact (“the Markov condition”) that all nodes are
conditionally independent of their nondescendants, conditional on their parents.

Consider how this property allows for simple factorization of 𝑃 for an 𝑋 → 𝑀 → 𝑌 DAG.
Note that 𝑃(𝑋, 𝑀, 𝑌 ) can always be written as:

𝑃(𝑋, 𝑀, 𝑌 ) = 𝑃(𝑋)𝑃(𝑀|𝑋)𝑃(𝑌 |𝑀, 𝑋)

If we believe, as implied by this DAG, that 𝑌 is independent of 𝑋 given 𝑀 , then we have the
simpler factorization:

𝑃(𝑋, 𝑀, 𝑌 ) = 𝑃(𝑋)𝑃(𝑀|𝑋)𝑃(𝑌 |𝑀)

More generally, using 𝑝𝑎𝑖 to denote the parents of 𝑖, we have:

𝑃(𝑣1, 𝑣2, … , 𝑣𝑛) = ∏ 𝑃(𝑣𝑖|𝑝𝑎𝑖) (2.2)

More generally, knowing if two nodes are or are not conditionally independent of each other
tells us if we can learn about one from values of the other.

2.3 Graphing Models and Using Graphs

While we have already been speaking about causal graphs throughout this chapter, we want
to take some time to unpack their core features and uses. A key benefit of causal models is
that they lend themselves to graphical representations. In turn, graphs constructed according
to particular rules can aid causal analysis. In the next subsection, we discuss a set of rules
for representing a model in graphical form. The following subsection then demonstrates how
access to a graph facilitates causal inference.
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2.3.1 Rules for Graphing Causal Models

The diagram in Figure 2.1 is a causal DAG (Hernán and Robins 2006). We endow it with
the interpretation that an arrow from a parent to a child means that a change in the parent
can, under some circumstances, induce a change in the child. Though we have already been
using this causal graph to help us visualize elements of a causal model, we now explicitly point
out a number of general features of causal graphs as we will be using them throughout this
book. Causal graphs have their own distinctive “grammar,” a set of rules that give them useful
analytic features.

Directed, acyclic. A causal graph represents elements of a causal model as a set of nodes (or
vertices), representing variables, connected by a collection of single-headed arrows (or directed
edges). We draw an arrow from node 𝐴 to node 𝐵 if and only if we believe that 𝐴 can have
a direct effect on 𝐵. Thus, in Figure 2.1, the arrow from 𝐼 to 𝑅 means that inequality can
directly affect redistributive demands.

The resulting diagram is a DAG if there are no paths along directed edges that lead from any
node back to itself—that is, if the graph contains no causal cycles. The absence of cycles (or
“feedback loops”) is less constraining than it might appear at first. In particular, if one thinks
that 𝐴 today causes 𝐵 tomorrow which in turn causes 𝐴 the next day, we can represent this as
𝐴1 → 𝐵 → 𝐴2 (rather than 𝐴 ↔ 𝐵). We timestamp the nodes, turning what might informally
appear as feedback into a noncyclical chain.

Meaning of missing arrows. The absence of an arrow between 𝐴 and 𝐵 means that 𝐴 is
not a direct cause of 𝐵.16 Here lies an important asymmetry: drawing an 𝐴 → 𝐵 arrow does
not mean that we know that 𝐴 does directly cause 𝐵; but omitting such an arrow implies that
we know that 𝐴 does not directly cause 𝐵. We say more with the arrows that we omit than
with the arrows that we include.

Returning to Figure 2.1, we have here expressed the belief that redistributive preferences exert
no direct effect on democratization; we have done so by not drawing an arrow directly from 𝑅
to 𝐷. In the context of this model, saying that redistributive preferences have no direct effect
on democratization is to say that any effect of redistributive preferences on democratization
must run through mobilization; there is no other pathway through which such an effect can
operate. As social scientists, we often have beliefs that take this form. For instance, the
omission of an arrow from 𝑅 to 𝐷 might be a way of encoding the belief that mass preferences
for redistribution cannot induce autocratic elites to liberalize the regime absent collective
action in pursuit of those preferences.

The same goes for the effects of 𝐼 on 𝑀 , 𝐼 on 𝐷, and 𝐸 on 𝐷: The graph in Figure 2.1 implies
that we believe that these effects also do not operate directly, but only along the indicated,
mediated paths.

16By “direct” we mean that the 𝐴 is a parent of 𝐵: that is, the effect of 𝐴 on 𝐵 is not fully mediated by one
or more other nodes in the model.

51



Moreover, when we say that 𝐴 does not have a direct effect on 𝐵—justifying an excluded
arrow—we do not mean merely that 𝐴 doesn’t affect 𝐵 on average. We mean that there is no
chance that 𝐴 affects 𝐵.

Possible-causes. The existence of an arrow from 𝐴 to 𝐵 does not imply that 𝐴 always has
(or certainly has) a direct effect on 𝐵. Consider, for instance, the arrows running from 𝐸 and
from 𝑅 to 𝑀 . Since 𝑀 has two parents, assuming all variables are binary, we define a range
of 16 nodal types for 𝜃𝑀 , capturing all possible joint effects of 𝐸 and 𝑅. However, for some of
these nodal types, 𝐸 or 𝑅 or both will have no effect on 𝑀 . For instance, in the nodal type
𝜃𝑀

0011,17 𝐸 has no effect on 𝑀 while 𝑅 has a positive effect. Thus, in a case with this nodal
type for 𝑀 , 𝐸 is not a cause of 𝑀 ; whereas in a case with, say, 𝜃𝑀

0101, 𝐸 has an effect on 𝑀 ,
while 𝑅 has none. In this sense, the existence of the arrows pointing into 𝑀 reflects that 𝐸
and 𝑅 are “possible causes” of 𝑀 .18

No excluded common causes. Any cause common to multiple nodes on a graph must itself
be represented on the graph. If 𝐴 and 𝐵 on a graph are both affected by some third node, 𝐶,
then we must represent this common cause. Thus, for instance, the graph in Figure 2.1 implies
that 𝐼 and 𝐸 have no common cause. If we believed that a country’s level of inequality and its
ethnic composition were both shaped by, say, its colonial heritage, then this DAG would not
be an accurate representation of our beliefs about the world. To make it accurate, we would
need to add to the graph a node capturing that colonial heritage and include arrows running
from colonial heritage to both 𝐼 and 𝐸.

This rule of “no excluded common causes” ensures that the graph captures all potential re-
lations among nodes that are implied by our beliefs. If 𝐼 and 𝐸 are in fact driven by some
common cause, then this means not just that these two nodes may be correlated but also that
each may be correlated with any consequences of the other. For instance, a common cause
of 𝐼 and 𝐸 would also imply a dependence between 𝑅 and 𝐸. 𝑅 and 𝐸 are implied to be
independent in the current graph but would be implied to be dependent if a common node
pointed into both 𝐼 and 𝐸.

Of particular interest is the implied independence of 𝜃 terms from one another, noted earlier.
In Figure 2.1, imagine, for instance, that the distribution of 𝜃𝐷 and 𝜃𝐼 was dependent: that
is, if the distribution of 𝜃𝐷 were different when 𝐼 = 0 than when 𝐼 = 1. This could be because
some other factor, perhaps a feature of a country’s economy, affects both its level of inequality
and the response of its elites to mobilization from below. Such a situation would represent
a classic form of confounding: the assignment of cases to values on an explanatory node (𝐼)
would depend on the case’s potential outcomes on 𝐷. The omission of any such common cause
is equivalent to expressing the belief that 𝐼 is exogenous, that is, (as if) randomly assigned. If

17We are applying the subscript scheme from Table 2.3, where 𝐸 plays the role of 𝑋1 and R plays the role of
𝑋2.

18Put in more general terms, a node’s causal function must include all nodes pointing directly into it. We can
imagine this same idea in a parametric setting. Imagine that 𝑀’s causal function was specified as: 𝑀 = 𝑅𝐸.
This function would allow for the possibility that 𝑅 affects 𝑀, as it will whenever 𝐸 = 1. However, it would
also allow that 𝑅 will have no effect, as it will when 𝐸 = 0.
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we believe such a common cause to be operating, however, then we must include it as a node
on the graph, pointing into both 𝐼 and 𝐷.

Representing Unobserved Confounding

It may be, however, that there are common causes that we simply do not understand. We
might believe, for instance, that some unknown factor (partially) determines both 𝐼 and 𝐷.
We refer to this situation as one of unobserved confounding. Even when we do not know
what factor is generating the confounding, we still have a violation of the assumption of
independence and need to be sure we are capturing this relationship in the graph. We can do
so in a couple of ways. If we are representing all 𝜃 terms on a graph, then we can capture
the relationship between 𝜃𝐼 and 𝜃𝐷 by including a single, joint term (𝜃𝐼 , 𝜃𝐷) that points into
both 𝐼 and 𝐷. Where the 𝜃 terms are not explicitly included in a graph (as is often the case),
we can represent unobserved confounding by adding a two-headed arrow, or a dotted line,
connecting nodes whose unknown causes are not independent. Either way, we are building in
the possibility of a joint distribution over the nodal types 𝜃𝐼 and 𝜃𝐷. Figure 2.3 illustrates for
the 𝐼 and 𝐷 relationship.

D

I

Figure 2.3: A DAG with unobserved confounding

We address unobserved confounding in more detail later in the book and show how we can
seek to learn about the joint distribution of nodal types—that is, how we can learn even about
confounders that we cannot observe—in such situations.

License to exclude nodes. The flip side of the “no excluded common causes” rule is that a
causal graph does not need to include everything that we know about a substantive domain
of interest. We may know quite a lot about the causes of economic inequality, for example.
But we can safely omit any factor from the graph as long as it does not affect multiple nodes
in the model. Indeed, 𝜃𝐼 in Figure 2.1 already implicitly captures all factors that affect 𝐼 .
Similarly, 𝜃𝐷 captures all factors other than mobilization that affect democratization. We
may be aware of a vast range of forces shaping whether countries democratize, but we can
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choose to bracket them for the purposes of an examination of the role of economic inequality.
This bracketing is permissible as long as none of these unspecified factors also act on other
nodes that are included in the model. For instance, we have chosen to exclude from the model
the existence of international pressure on a state to democratize, even though this is another
potential cause of democratization. This exclusion is permissible as long as we believe that
international pressure does not have an effect on the level of inequality, a state’s ethnic makeup,
redistributive demands, or mobilization.

Similarly, we do not need to include all mediating steps that we believe might be operating
between two causally linked variables. In Figure 2.1, we could choose to exclude 𝑅, for instance,
and draw an arrow directly from 𝐼 to 𝑀 . We could also exclude 𝑀 , if we wished to. (Since
𝐸 points into 𝑀 , removing 𝑀 would mean that we would have 𝐸 point directly into 𝑅—a
point that we return to below.) And, of course, the model that we have drawn leaves out
numerous other mediating steps that we might imagine—such as the role of elites’ perceptions
of the costs of repression as a mediator between mobilization and democratization. In other
words, we generally have discretion about the degree of granularity to represent in our chains
of causation. As we explain in Chapter 6 and Chapter 7, we will sometimes want to spell
out more, rather than fewer, mediating steps in our models for reasons of research design—
because of the empirical leverage that such mediating variables might provide. However, there
is nothing about the rules of DAG-making that require a particular level of granularity.

We can’t read causal functions from a graph. As should be clear, a DAG does not
represent all features of a causal model. What it does record is which nodes enter into the
causal function for every other node: what can directly cause what. But the DAG contains
no other information about the form of those causal relations. Thus, for instance, the DAG in
Figure 2.1 tells us that 𝑀 is a function of both 𝑅 and 𝐸, but it does not tell us whether that
joint effect is additive (𝑅 and 𝐸 separately increase mobilization) or interactive (the effect of
each depends on the value of the other). Nor does it tell us whether either effect is linear,
concave, or something else.

This lack of information about functional forms is puzzling at first: Surely, it would be conve-
nient to visually differentiate, say, additive from interactive effects. As one thinks about the
variety of possible causal functions; however, it quickly becomes clear that there would be no
simple visual way of capturing all possible causal relations. Moreover, causal graphs do not
require a specification of causal functions in order to perform their main analytic purpose—a
purpose to which we now turn.

2.3.2 Conditional Independence from DAGs

If we encode our prior knowledge using the grammar of a causal graph, we can put that
knowledge to work for us in powerful ways. In particular, the rules of DAG construction allow
for an easy reading of whether and when variables in the model are likely to be independent
of each other. More formally, we say that we can use a DAG to identify the conditional
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independencies that are implied by our causal beliefs. (For a more extended treatment of the
ideas in this section, see Rohrer (2018).)

In Section 2.2.4 we introduced the idea of conditional independence. A major benefit of a DAG
is that, if we have followed the rules for DAG construction correctly, we can read relationships
of conditional independence directly from the graph.

Such relations of conditional independence are central to the strategy of statistical control, or
covariate adjustment, in correlation-based forms of causal inference, such as regression. In a
regression framework, identifying the causal effect of an explanatory node, 𝑋, on a dependent
node, 𝑌 , requires the assumption that 𝑋’s value is conditionally independent of 𝑌 ’s potential
outcomes (over values of 𝑋) given the model’s covariates. To draw a causal inference from a
regression coefficient, in other words, we have to believe that including the covariates in the
model “breaks” any biasing correlation between the value of the causal node and its unit-level
effect.

As we will explore, however, relations of conditional independence are also of more general
interest in that they tell us, given a model, when information about one feature of the world
may be informative about another feature of the world, given what we already know. By
identifying the possibilities for learning, relations of conditional independence can thus guide
research design more broadly. We discuss these research-design implications in Chapter 7, but
focus here on showing how relations of conditional independence operate on a DAG.

To see more systematically how a DAG can reveal conditional independencies, it is useful to
spell out three elemental structures according to which information can flow across a causal
graph.

A B C

(1) A path of arrows pointing in the same direction

A B C

(2) A forked path

A B C

(3) An inverted fork (collision)

Figure 2.4: Three elemental relations of conditional independence.

55



For each of the three structures in Figure 2.4, we can read off whether nodes are independent
both in situations when other nodes are not already observed and in situations in which they
are. We discuss each of these structures in turn. For each, we first specify the unconditional
relations among nodes in the structure and then the relations conditional on having already
observed another node. When we talk about “unconditional” relations, we are asking: What
does observing one node in the structure tell us about the other nodes? When we talk about
“conditional” relations, we are asking: If we have already observed a node (so, conditional on
that node), what does observing a second node tell us about a third node?

(1) A Path of Arrows in the Same Direction

Unconditional relations. Information can flow unconditionally along a path of arrows pointing
in the same direction. In Panel 1 of Figure 2.4, information flows across all three nodes. If we
have observed nothing yet, learning about any one node can tell us something about the other
two.

Conditional relations. Learning the value of a node along a path of arrows pointing in the
same direction blocks flows of information that passes through that node. Knowing the value
of 𝐵 in Panel 1 renders 𝐴 no longer informative about 𝐶, and vice versa. This is because
anything that 𝐴 might tell us about 𝐶 is already captured by the information contained in
𝐵.

(2) A forked path

Unconditional relations. Information can flow unconditionally across the branches of any forked
path. In Panel 2, if we have observed nothing already, learning about any one node can provide
information about the other two nodes. For instance, observing only 𝐴 can provide information
about 𝐶 and vice versa.

Conditional relations. Learning the value of the node at the forking point blocks flows of infor-
mation across the branches of a forked path. In Panel 2, learning 𝐴 provides no information
about 𝐶 if we already know the value of 𝐵.19

(3) An Inverted Fork (Collision)

Unconditional relations. When two or more arrowheads collide, generating an inverted fork,
there is no unconditional flow of information between the incoming sequences of arrows. In
Panel 3, learning only 𝐴 provides no information about 𝐶, and vice versa, since each is
independently determined.

Conditional relations. Collisions can be sites of conditional flows of information. In the jargon
of causal graphs, 𝐵 in Panel 3 is a “collider” for 𝐴 and 𝐶.20 Although information does not flow
unconditionally across colliding sequences, it does flow across them conditional on knowing
the value of the collider node or any of its downstream consequences. In Panel 3, learning 𝐴

19Readers may recognize this statement as the logic of adjusting for a confound that is a cause of both an
explanatory node and a dependent node in order to achieve conditional independence.

20In the familial language of causal models, a collider is a child of two or more parents.
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does provide new information about 𝐶, and vice-versa, if we also know the value of 𝐵 (or, in
principle, the value of anything that 𝐵 causes).

The last point is somewhat counterintuitive and warrants further discussion. It is easy enough
to see that, for two nodes that are correlated unconditionally, that correlation can be “broken”
by controlling for a third node. In the case of collision, two nodes that are not correlated
(or more generally, independent) when taken by themselves can become correlated when we
condition on (i.e., learn the value of) a third node into which they both point, the collider.
The reason is in fact quite straightforward once one sees it: If an outcome is a joint function
of two inputs, then if we know the outcome, information about one of the inputs can provide
information about the other input. For example, if I know that you are short, then learning
that your mother is tall makes me more confident that your father is short. Crucially, it is
knowing the outcome—that you are short—that makes the information about your mother’s
height informative about your father’s.

Looking back at our democratization DAG in Figure 2.1, 𝑀 is a collider for 𝑅 and 𝐸, its
two inputs. Suppose that 𝑀 is determined by the parametric causal function 𝑀 = 𝑅𝐸.
Knowing about redistributive preferences alone provides no information whatsoever about
ethnic homogeneity since the two are determined independently of one another. On the other
hand, imagine that we already know that there was no mobilization. Now, if we observe
that there were redistributive preferences, we can figure out the level of ethnic homogeneity:
it must be 0. (And likewise in going from observing homogeneity to inferring redistributive
preferences.)

Using these basic principles, conditional independencies can be read off of any DAG. If we want
to know whether two nodes are conditionally independent of one another, we do so by checking
every path connecting them. And we ask whether, along those paths, the flow of information
is open or blocked, given any other nodes whose values are already observed. Conditional
independence is established when all paths are blocked given what we have already observed;
otherwise, conditional independence is absent.

Following Pearl (2000), we will sometimes refer to relations of conditional independence using
the term d-separation. We say that variable set 𝒞 𝑑-separates variable set 𝒜 from variable set
ℬ if 𝒜 and ℬ are conditionally independent given 𝒞. For instance, in Panel 2 of Figure 2.4,
𝐵 𝑑−separates 𝐴 and 𝐶. We say that 𝒜 and ℬ are 𝑑−connected given 𝒞 if 𝒜 and ℬ are not
conditionally independent given 𝒞. For instance, in Panel 3, 𝐴 and 𝐶 are 𝑑−connected given
𝐵.

Readers are invited to practice reading relations of conditional independence off of a DAG
using the exercises in the Appendix, Section 2.5.3. Analyzing a causal graph for relations of
independence represents one payoff to formally encoding our beliefs about the world in a causal
model. We are, in essence, drawing out implications of those beliefs: Given what we believe
about a set of direct causal relations (the arrows on the graph), what must this logically imply
about other dependencies and independencies on the graph, conditional on having observed
some particular set of nodes? We show in a later chapter how these implications can be
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deployed to guide research design by indicating which parts of a causal system are potentially
informative about other parts that may be of interest.

2.3.3 Simplifying Models

It is very easy to write down a model that is too complex to use effectively. In such cases we
often seek simpler models that are consistent with models we have in mind but contain fewer
nodes or more limited variation. As we have already suggested, we often have considerable
discretion about how detailed to make our models. However, whenever we seek to simplify
a more complex model, we must take care to ensure that the simplified model is logically
consistent with the original model.

The main rule that we must follow when simplifying a model is to preserve dependencies implied
by the original, more complex model. Consider a few examples drawing on our Inequality
example. Suppose that we begin with a model that includes the following structure:

Mobilization ← Inequality → Mortality

And suppose that we are not interested in inequality or its effects per se and so wish to
eliminate it from the model. We can do so, but then we must retain the relationship between
Mobilization and Mortality that is implied in the original model. We can do so by drawing a
double-headed arrow between Mobilization and Mortality, implying unobserved confounding
between the two. Another alternative could be to simplify the graph further and simply remove
Mortality and its descendants from the graph, which we can safely do if none of these nodes
point into other nodes that we are retaining (since, if they do, then another dependency would
be lost by this simplification).

Another situation in which a dependency must be preserved is where the node we eliminate is
a mediator, as when we remove Mobilization from

Inequality → Mobilization → Democratization

.

Since a dependency between Inequality and Democratization runs through Mobilization in
the original model, we would preserve that dependency by linking the two, that is, with the
structure:

Inequality → Democratization

.

Alternatively, suppose that, beginning with the model Inequality → Mobilization →
Democratization, we wish to eliminate Inequality. Suppose further that Inequality is a root
node (it has no substantive parents) with no children other than Mobilization. Then we can
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eliminate Inequality from the graph without taking further steps. This is because there are
no dependencies among substantive nodes that operate via Inequality.

Similarly, if our model includes the structure Mobilization → Democratization ← Growth,
then we can safely and simply eliminate Growth from the model, as long as Growth is a root
node with no other children besides Democratization.

As we discuss further in Chapter 6, eliminating nodes may change the meaning of the ex-
ogenous, 𝜃 terms in the graph. For instance, when we eliminate Growth from the model
Mobilization → Democratization ← Growth, leaving us with the simpler Mobilization →
Democratization, the term 𝜃𝐷 changes in its range and interpretation. With all variables bi-
nary, 𝜃𝐷 in the original model could take on any of 16 nodal types, representing all possible
joint effects of Mobilization and Growth. In the simplified model, 𝜃𝐷 now ranges across only
four possible nodal types. Growth’s effects, rather than being explicitly modeled through the
nodal-type functions, become an unobserved source of variation in Mobilization’s effects—and
are, thus, “absorbed” into the four remaining nodal types.

In sum, we can work with models that are simpler than our causal beliefs: we may believe a
model to be true, but we can derive from it a sparser set of claims. There may be intervening
causal steps or features of context that we believe matter but that are not of interest for
a particular line of inquiry. While these can be left out of our model, we nonetheless have
to make sure that their implications for the relations remaining in the model are not lost.
Understanding the rules of reduction allows us to undertake an important task: checking
which simpler claims are and are not consistent with our full belief set.

2.4 Conclusion

In this chapter, we have shown how we can inscribe causal beliefs, rooted in the potential
outcomes framework, into a causal model. In doing so, we have now set out the foundations of
the book’s analytic framework. Causal models are both the starting point for analysis in this
framework and the object about which we seek to learn. Before moving on to build on this
foundation, we offer in the next chapter guidance by example on the construction of causal
models, illustrating how a set of substantive social scientific arguments can be represented in
causal model form.
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2.5 Chapter Appendix

2.5.1 Steps for Constructing Causal Models

1. Identify a set of variables in a domain of interest. These become the nodes of the model.

• Specify the range of each node: Is it continuous or discrete?
• Each node should have an associated 𝜃 term pointing into it, representing unspecified

other influences (not necessarily graphed)

2. Draw a causal graph (DAG) representing beliefs about causal dependencies among these
nodes.

• Include arrows for direct effects only
• Arrows indicate possible causal effects
• The absence of an arrow between two nodes indicates a belief of no direct causal rela-

tionship between them
• Ensure that the graph captures all relationships between nodes. This means that either

(a) any common cause of two or more nodes is included on the graph (with implications
for Step 1) or (b) nodes that are not independent of each other are connected with a
double-headed arrow or dashed, undirected edge.

3. Write down one causal function for each endogenous node.

• Each node’s function must include all nodes directly pointing into it on the graph as well
as the 𝜃 terms

• Functions may express arbitrary amounts of uncertainty about causal relations
• In this book’s nonparametric framework, the causal functions are captured entirely by

the 𝜃 terms.

4. State probabilistic beliefs about the distributions of the 𝜃s.

• How common or likely to do we think different nodal types are for each node?
• Are the nodal types independently distributed? If in Step 2 we drew an undirected edge

between nodes, then we believe that the connected nodes’ types are not independently
distributed.

2.5.2 Model Construction in Code

Our CausalQueries package provides a set of functions to implement all of these steps con-
cisely for binary models—models in which all nodes are dichotomous.
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# Steps 1 and 2
# We define a model with three binary nodes and
# specified edges between them:
model <- make_model("X -> M -> Y")

# Functional forms are unrestricted. Restrictions can
# be added. Here we impose monotonicity at each step
# by removing one type for M and one for Y
model <- set_restrictions(model, labels = list(M = "10", Y="10"))

# Step 4
# Set priors over the distribution of (remaining) causal types.
# Here we set "jeffreys priors"
model <- set_priors(model, distribution = "jeffreys")

# We now have a model defined as an R object.
# Later we will update and query this model

These steps are enough to fully describe a binary causal model. Later in this book, we will see
how we can ask questions of a model like this but also how to use data to train it.

2.5.3 Exercise: Reading Conditional Independence from a Graph

We encourage readers to get some practice identifying the relations of conditional independence
by analyzing the relationship between 𝐴 and 𝐷 in Figure 2.5. Try answering the following
questions yourself, and then consult the answers provided below.

A B C D

 

Figure 2.5: An exercise: 𝐴 and 𝐷 are conditionally independent given which other node(s)?

Are A and D independent:
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1. unconditionally?
2. if you condition on 𝐵?
3. if you condition on 𝐶?
4. if you condition on 𝐵 and 𝐶?

Answers

1. unconditionally?

Yes. 𝐵 is a collider, and information does not flow across a collider if the value of the collider
node or its consequences is not known. Since no information can flow between 𝐴 and 𝐶,
no information can flow between 𝐴 and 𝐷 simply because any such flow would have to run
through 𝐶.

2. if you condition on 𝐵?

No. Conditioning on a collider opens the flow of information across the incoming paths. Now,
information flows between 𝐴 and 𝐶. And since information flows between 𝐶 and 𝐷, 𝐴 and
𝐷 are now also connected by an unbroken path. While 𝐴 and 𝐷 were independent when we
conditioned on nothing, they cease to be independent when we condition on 𝐵.

3. if you condition on 𝐶?

Yes. Conditioning on 𝐶, in fact, has no effect on the situation. Doing so cuts off 𝐵 from
𝐷, but this is irrelevant to the 𝐴-𝐷 relationship since the flow between 𝐴 and 𝐷 was already
blocked at 𝐵, an unobserved collider.

4. if you condition on 𝐵 and 𝐶?

Yes. Now we are doing two, countervailing things at once. While conditioning on 𝐵 opens the
path connecting 𝐴 and 𝐷, conditioning on 𝐶 closes it again, leaving 𝐴 and 𝐷 conditionally
independent.
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3 Illustrating Causal Models

Chapter summary

We use three arguments from published political science research to illustrate how to
represent theoretical ideas as structural causal models. We illustrate using Paul Pier-
son’s (1994) work on welfare state retrenchment, Elizabeth Saunders’ (2011) research on
military intervention strategies, and Adam Przeworski and Fernando Limongi’s (1997)
study of the relationship between national wealth and democracy.

In this short chapter, we illustrate how we can encode prior knowledge in a causal model by
asking how we might construct models in light of extant scholarly works. We do this draw-
ing on three well-known publications in comparative politics and international relations: Paul
Pierson’s book on welfare state retrenchment (Pierson 1994); Elizabeth Saunders’ research
on leaders’ choice of military intervention strategies (Saunders 2011); and Przeworski and
Limongi’s work on democratic survival (Przeworski and Limongi 1997), an instructive coun-
terpoint to Boix’s argument about a related dependent variable (Boix 2003). For each, we
represent the causal knowledge that we might plausibly take away from the work in question
in the form of a causal model.

Readers might represent these knowledge bases differently; our aim here is only to illustrate
how causal models are constructed, rather than to defend a particular representation (or the
works in question) as accurate.

Before we begin, we offer a caution about how the illustrations in this chapter should be
understood. For simplicity, in each of the next sections we focus on a specific argument in the
literature. We emphasize, however, that in general a causal model should be thought of as
a representation of our state of knowledge or beliefs about causal relations within a domain.
Suppose, for instance, that we are interested in testing a specific argument in which 𝑋 affects
𝑌 through mediator 𝑀 . In constructing a causal model to guide our empirical analysis, we
cannot simply draw that argument in DAG form (𝑋 → 𝑀 → 𝑌 ) and leave it at that. In
line with the principles relating to conditional independence outlined in Chapter 2, we must
consult our beliefs about this causal domain in a broader sense. For instance, given what we
know about the domain from prior observations or studies, is it plausible that 𝑋 could affect
𝑌 through a pathway that does not go through 𝑀? If we believe it is possible, then we must
also draw a direct 𝑋 → 𝑌 arrow, or our causal model will steer us wrong—even if our primary
aim is to examine the pathway through 𝑀 . Otherwise, our DAG will be enforcing a relation
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of conditional independence (𝑋 being conditionally independent of 𝑌 given 𝑀) that we do not
believe holds. Thus, while we draw on specific works in the illustrations in this chapter, we
urge readers to remember that in practice, when generating a causal model, one would want
to characterize a broader prior knowledge base in relation to a causal domain.

With these exercises, we aim to illuminate a number of features of causal models and their
construction. The examples demonstrate how graphs capture beliefs about relations of condi-
tional independence and illustrate the potential complexity embedded in the causal structures
implied by common social-scientific arguments. For each work, we also go beyond the graphs
themselves to illustrate both a potential parametric rendering of the causal functions and a
nonparametric formulation built on nodal types.

3.1 Welfare State Reform

The argument in Pierson’s 1994 book Dismantling the Welfare State? challenged prior notions
of post-1980 welfare state retrenchment in OECD countries as a process driven primarily by
socioeconomic pressures (slowed growth, rising unemployment, rising deficits, aging popula-
tions) and the rise of market-conservative ideologies (embodied by the political ascendance of
figures such as Margaret Thatcher and Ronald Reagan). Pierson argues that socioeconomic
and ideological forces put retrenchment on the policy agenda, but do not ensure its enactment
because retrenchment is a politically perilous process of imposing losses on large segments of
the electorate. Governments will only impose such losses if they can do so in ways that allow
them to avoid blame—by, for instance, making the losses hard to perceive or the responsibility
for those losses difficult to trace. These kinds of blame-avoidance opportunities are themselves
conditioned by the particular social-program structures that governments inherit.

While the argument has many more specific features (e.g., different program-structural factors
that matter, various potential strategies of blame-avoidance), its essential components can
be captured with a relatively simple causal model. We propose such a model in graphical
form in Figure 3.1. Here, the outcome of retrenchment (𝑅) hinges on whether retrenchment
makes it onto the agenda (𝐴) and on whether blame-avoidance strategies are available to
governments (𝐵). Retrenchment emerges on the policy agenda as a consequence of both
socioeconomic developments (𝑆) and the ascendance of ideologically conservative political
actors (𝐶). Inherited program structures (𝑃 ), meanwhile, determine the availability of blame-
avoidance strategies. To avoid cluttering the graph, we do not represent the 𝜃 terms, but
implicitly that every node on this graph has a 𝜃 node pointing into it.

A few features of this graph warrant attention. As we have discussed, it is the omitted arrows
in any causal graph that imply the strongest statements. The graph implies that 𝐶, 𝑆, and
𝑃—which are neither connected along a directed path nor downstream from a common cause—
are independent of one another. This implies, for instance, that whether conservatives govern
is independent of whether inherited program structures will allow for blame-free retrenchment.
Thus, as Pierson argues, a Reagan or Thatcher can come to power but nonetheless run up
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P : Program structure

B : Blame − avoidance opportunity

R : Retrenchment

C : Conservative govt

S : Socioeconomic pressures

A : On Agenda

Welfare state rentrenchment (Pierson, 1994)

Figure 3.1: A graphical representation of Pierson’s (1994) argument.
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against an opportunity structure that would make retrenchment politically perilous. Given
the absence of bidirectional arrows indicating confounding, the graph similarly implies that
the nodal types for all nodes are independent of one another. So, for instance, conservatives
are no more or less likely to come to power in places where the policy agenda is more likely
to be responsive to conservative ideological demands (i.e., no confounding between 𝐶 and 𝐴).
These are all strong assumptions.

Further, this graph represents the belief that any effect of program structures on retrenchment
must run through their effects on blame-avoidance opportunities. One could imagine relaxing
this restriction by, for instance, drawing an arrow from 𝑃 to 𝐴: Program structures might ad-
ditionally affect retrenchment in other ways, such as through an impact on the fiscal costliness
of the welfare state, thus helping to determine whether reform makes it onto the agenda. If the
current state of knowledge suggested that program structures could affect retrenchment via a
pathway other than blame-avoidance opportunities, then we would indeed want to include a
direct 𝑃 → 𝐴 arrow.

Importantly, adding such an arrow would lend our prior beliefs less structure in the sense that
we are ruling out fewer causal possibilities by assumption. Put differently, it is the model with
fewer connections between nodes that represents the stronger claim about the world since an
omitted arrow forbids particular direct effects. Moreover, as we discuss in later chapters, the
choice about which nodes to connect or not to connect directly can have consequences for
causal-model based research, including for the inferences that we end up drawing. We also
discuss, in Chapter 16, the possibility of empirically evaluating alternative model structures.

Where two variables are connected by an arrow, moreover, this does not imply that a causal
effect will always operate. Consider, for instance, the arrow pointing from 𝐴 to 𝑅. The fact
that 𝐴 sometimes affects 𝑅 and sometimes does not is, in fact, central to Pierson’s argument:
Conservatives and socioeconomic pressures forcing retrenchment onto the agenda will not
generate retrenchment if blame-avoidance opportunities are absent.

The graph also reflects a choice about where to begin. We could, of course, construct a causal
account of how conservatives come to power in the first place, how socioeconomic pressures
arise, or why programs were originally designed as they were. Yet it is perfectly permissible
for us to bracket these antecedents and start the model with 𝐶, 𝑆, and 𝑃 , as long as we do
not believe that these variables have any antecedents in common. If they do have common
causes, then this correlation should be captured in the DAG.1

The DAG itself tells us about the possible direct causal dependencies but is silent on the
ranges of and functional relations among the variables. How might we express these? With
three endogenous variables, we need three functions indicating how their values are determined.
Moreover, every variable pointing directly into another variable must be part of that child’s
causal function.

1In DAG syntax, this correlation can be captured by placing the common cause(s) explicitly on the graph or
by drawing a dashed line between the correlated nodes, leaving the source of the correlation unspecified.
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One option would be to take a parametric approach and imagine specific functions connecting
parents to children, with 𝜃 terms representing exogenous “noise.” Let us assume that all
variables (including the implied 𝜃 terms) are binary, with each condition either absent or
present. Then, for instance, we can capture quite a lot of Pierson’s theoretical logic with the
following quite simple causal functions:

• 𝐴 = 𝐶𝑆𝜃𝐴, capturing the idea that retrenchment makes it on the agenda only if conser-
vatives are in power and socioeconomic pressures are high.

• 𝐵 = 𝑃 𝜃𝐵, implying that blame-avoidance opportunities arise only when program struc-
tures take a particular form.

• 𝑅 = 𝐴𝐵𝜃𝑅, implying that retrenchment will occur only if it is on the agenda and blame-
avoidance opportunities are present.

In each equation, the 𝜃 term allows for random, exogenous forces that might block the outcome
from occurring. In the last causal function, for instance, retrenchment will only occur if
retrenchment is on the agenda and blame-avoidance opportunities are present—but even if
both are present, the effect on retrenchment also hinges on the value of 𝜃𝑅. When 𝜃𝑅 = 1, the
𝐴𝐵 combination has a positive causal effect on retrenchment. When 𝜃𝑅 = 0, 𝐴𝐵 has no causal
effect: retrenchment will not occur regardless of the presence of 𝐴𝐵. We can think of 𝜃𝑅 as
capturing a collection of features of a case’s context that might render the case susceptible or
not susceptible to an 𝐴𝐵 causal effect. For instance, Pierson’s analysis suggests that a polity’s
institutional structure might widely diffuse veto power such that stakeholders can block reform
even when retrenchment is on the agenda and could be pursued without electoral losses. We
could think of such a case as having a 𝜃𝑅 value of 0, implying that 𝐴𝐵 has no causal effect. A
𝜃𝑅 = 1 case, with a positive effect, would be one in which the government has the institutional
capacity to enact reforms that it has the political will to pursue. Yet 𝜃𝑅 would also capture
countless other forces, many of which we might not be able to theorize or observe, that might
facilitate or block 𝐴𝐵’s effect.

Alternatively, we could take a non-parametric approach, as we generally do in the remainder
of this book. In a non-parametric setup, each node’s 𝜃 term captures that node’s nodal type.
Each value of a 𝜃 term’s range represents a possible way in which the node might respond to
its parents. With all substantive variables being binary, we would define 𝜃𝐴 as taking on one
of 16 values (16 types, given 2 parent nodes); 𝜃𝐵 as taking on one of four values; and 𝜃𝑅 as
taking on one of 16 values; with 𝜃𝐶 and 𝜃𝑆 each taking on one of two values.

Thus, the central thrust of Pierson’s argument about causal effects could then be represented
in nodal-type form as:

• 𝜃𝐴 = 𝜃𝐴
0001, meaning that 𝐴 = 1 if and only if both of its parents (𝐶 and 𝑆) are 1,

capturing the joint necessity of conservative leadership and socioeconomic pressures for
putting welfare state reform on the agenda

• 𝜃𝐵 = 𝜃𝐵
01, meaning that 𝐵 = 1 if and only if its parent (𝑃 ) is 1, capturing the role of

favorable program structures in generating blame-avoidance opportunities.
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• 𝜃𝑅 = 𝜃𝑅
0001, meaning that 𝑅 = 1 if and only if both of its parents (𝐴 and 𝐵) are

1, capturing the joint necessity of reform being on the agenda and blame-avoidance
opportunities being available for retrenchment to occur.

In practice, we would not simply define each of these 𝜃 terms as taking on the indicated
nodal types. Doing so would imply that we had complete certainty that causal relations in all
cases behave according to Pierson’s logic. Instead, we would normally allow for a probability
distribution over each 𝜃, representing our beliefs about what kinds of causal effects are most
likely or most common. How we define the distributions over 𝜃𝐴, 𝜃𝐵, and 𝜃𝑅 depends on the
degree of confidence that we want to express in Pierson’s specific argument (given that we
accept the DAG). To represent the belief that Pierson’s argument is correct with certainty and
operates in a uniform, deterministic fashion across units, we would simply have degenerate
distributions for 𝜃𝐴, 𝜃𝐵, and 𝜃𝑅, with a probability of 1.0 placed on the respective nodal types
shown above. To capture uncertainty about the functional relations on any graph or if we
believe that there is some heterogeneity of effects across units, we would disperse probability
density across types for each 𝜃. For instance, for 𝜃𝑅 we might want to put some weight
on 𝜃𝑅

0011 (blame-avoidance opportunities alone are enough to generate retrenchment), 𝜃𝑅
0101

(conservative leaders alone are enough), 𝜃𝑅
0111 (either is enough), and 𝜃𝑅

0000 (retrenchment will
not happen even when both conditions are present), while perhaps putting greatest weight on
𝜃𝑅

0001.2

Our beliefs about the distribution of exogenous conditions—that is, how common conservative
governments, socioeconomic pressures, and particular program structures are—would similarly
be captured in distributions over the values of 𝜃𝐶, 𝜃𝑆, and 𝜃𝑃 , respectively.

3.2 Military Interventions

In her book Leaders at War, Saunders (2011) asks why, when intervening militarily abroad,
leaders sometimes seek to transform the domestic political institutions of the states they target
while sometimes seeking only to shape those states’ external behaviors.

Saunders’ central explanatory variable is the nature of leaders’ causal beliefs about security
threats. When leaders are “internally focused,” they believe that threats in the international
arena derive from the internal characteristics of other states. Leaders who are “externally
focused,” by contrast, understand threats as emerging strictly from other states’ foreign and
security policies.

These basic worldviews, in turn, affect the cost-benefit calculations leaders make about inter-
vention strategies—in particular, about whether to try to transform the internal institutions
of a target state—via two mechanisms. First, an internal focus (as opposed to an external fo-
cus) affects leaders’ perceptions of the likely security gains from a transformative intervention

2In notation that we use later, these beliefs would be represented with a 𝜆𝑅 vector.
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strategy. Second, internal versus external focus affects the kinds of strategic capabilities in
which leaders invest over time (Do they invest in the kinds of capabilities suited to internal
transformation?); and those investments in turn affect the costliness and likelihood of success
of alternative intervention strategies. Calculations about the relative costs and benefits of
different strategies then shape the choice between a transformative and a non-transformative
approach to intervention.

At the same time, leaders can only choose a transformative strategy if they decide to intervene
in the first place. The decision about whether to intervene depends, in turn, on at least two
kinds of considerations. The first is about fit: A leader is more likely to intervene against
a target when the nature of the dispute makes the leader’s preferred intervention strategy
(transformative or non-transformative) appear feasible in a given situation. Second, Saunders
allows that forces outside the logic of her main argument might also affect the likelihood of
intervention: in particular, leaders may be pushed to intervene by international or domestic
audiences.

Figure 3.2 depicts the causal dependencies in Saunders’ argument in DAG form (again, with
all 𝜃 terms left implicit). Working from left to right, we see that whether or not leaders are
“internally focused” (𝐹 ) affects the expected net relative benefits of transformation (𝐵), both
via a direct pathway and via an indirect pathway running through investments in transforma-
tive capacities (𝑇 ). Characteristics of a given dispute or target state (𝐷) likewise influence the
benefits of transformation (𝐵). The decision about whether to intervene (𝐼) is then a function
of three factors: the presence or absence of an internal focus (𝐹 ), the expected relative net
benefits of transformation (𝐵), and audience pressures (𝐴). Finally, the choice of whether to
pursue a transformative strategy (𝑆) is a function of whether or not intervention occurs at all
(𝐼), and of cost-benefit comparisons between the two strategies (𝐵).

This DAG illustrates how readily causal graphs can depict the multiple pathways through
which a given variable might affect another variable, as with the multiple pathways linking
𝐹 to 𝐼 and 𝐵 (and, thus, all of its causes) to 𝑆. In fact, this graphical representation of the
dependencies in some ways throws the multiplicity of pathways into even sharper relief than
does a narrative exposition of the argument. For instance, Saunders draws explicit attention to
the fact that causal beliefs (𝐹 ) operate on expected net benefits via both a direct and indirect
pathways: both shaping calculations of the net benefits of transformation and conditioning
investments in capabilities. What is a bit easier to miss without formalization is that 𝐹 also
acts directly on the choice to intervene as part of the feasibility logic: When leaders assess
whether their generally preferred strategy would be feasible if deployed against a particular
target, the generally preferred strategy is itself a product of their internal or external focus.
The DAG also makes helpfully explicit that the two main outcomes of interest—the choice
about whether to intervene and the choice about how—are not just shaped by some of the
same causes but are themselves causally linked: one can only decide how to intervene if one
has intervened.

Omitted links are also notable. For instance, the lack of an arrow between 𝐷 and 𝐴 suggests
that features of the dispute that affect feasibility have no effect on audience pressures. If we
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F :  Internal focus

T :  Invest intransformation capablities

B :  Expected benefits from transformation

D :  Dispute characteristics

A :  Audience pressures

I :  Intervene

S :  Transformative strategy

Military intervention strategies (Saunders, 2011)

Figure 3.2: A graphical representation of Saunders’ (2011) argument.

instead believed there could be other connections—for instance, that audiences take feasibility
into account in demanding intervention—then we would want to include a 𝐷 → 𝐴 arrow.

Turning to variable ranges and causal functions, it is not hard to see how one might readily
capture Saunders’ logic in a fairly straightforward manner. All variables except 𝑆 could be
treated as binary with 𝐹 = 1 representing internally focused causal beliefs, 𝑇 = 1 representing
investments in transformative capabilities, 𝐵 = 1 representing expectations that transforma-
tion will be more net beneficial than non-transformation, 𝐷 = 1 meaning that a dispute has
characteristics that make transformation a feasible strategy, and so on. Although there are
two strategies, we in fact need three values for 𝑆 because it must be defined for all values of the
other variables—that is, it must take on a distinct categorical value if there is no intervention
at all. We could then define functions, such as:

• 𝐵 = 𝐹𝑇 𝐷, implying that transformation will be perceived to be net beneficial in a case
if and only if the leader has internally focused causal beliefs, the military is prepared for
a transformative strategy, and the dispute has characteristics that make transformation
feasible.

• 𝐼 = (1 − |𝐵 − 𝐹|) + (|𝐵 − 𝐹|)𝐴, implying that intervention can occur under (and only
under) either of two alternative sets of conditions: if the generally preferred strategy and
the more net-beneficial strategy in a given case are the same (i.e., such that 𝐵 − 𝐹 = 0)
or, when this alignment is absent (i.e., such that |𝐵 − 𝐹| = 1), where audiences pressure
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a leader to intervene.

As illustrated in the Pierson example, in a non-parametric framework, each parametric causal
function represents one nodal type for the relevant 𝜃. For instance, though we spare the reader
the complexities of the corresponding subscript notation, there is a single value of 𝜃𝐵 under
which the conditions 𝐹 = 1, 𝑃 = 1, and 𝑇 = 1 generate 𝐵 = 1, and we get 𝐵 = 0 otherwise.
Likewise, there exists a single value of 𝜃𝐼 under which 𝐵 = 1, 𝐹 = 1 and 𝐵 = 0, 𝐹 = 0 produce
𝐼 = 1, for either value of 𝐴; and 𝐴 has a positive effect on 𝐼 whenever 𝐵 ≠ 𝐹 . To work with
this model, we would specify a probability distribution over all possible nodal types for each
node on the graph.

This example also nicely illustrates how much potential causal complexity a moderately in-
tricate argument and causal graph imply. The number of possible nodal types at each node
depends on how many parents that node has. Looking at the endogenous nodes here, we
have one binary node with one parent (𝑇 ), implying 4 nodal types; two binary nodes with
three parents (𝐵 and 𝐼), implying 256 nodal types each; and one ternary node (𝑆) with two
parents, implying 81 nodal types.3 If we now conceptualize the set of possible “causal types”
as containing all distinct combinations of nodal types—all ways in which a case might behave
across all of its nodes (see Chapter 2)—then this graph implies over 21 million different ways in
which the values of exogenous nodes (𝐷, 𝐹 , and 𝐴) might jointly produce patterns of outcomes
across the graph. Saunders’ argument effectively represents one of these 21 million possible
sets of relations.

The framework that we outline in this book allows for updating our confidence in an argument
like Saunders’: We can ask how likely the specific causal type implied by this argument is
relative to other causal types. Yet, as we will see, the approach lends itself to a much broader
view of causal inquiry than simply asking whether an overall theory or argument is correct.
In the approach that we develop here, we will use data to update our beliefs over all causal
types allowed for in a model. We can then use these updated beliefs to answer any number of
specific causal questions about relationships in the model. For instance, we can use a single
set of data to update the model and then ask about the average effect of internal focus on
the intervention; the likelihood of a positive effect of internal focus on the intervention; the
relative importance of the expected-benefits pathway over the direct pathway in generating a
positive effect; or effects at individual steps in the causal chain, such as the effect of expected
benefits on the choice of strategy.

3For 𝑆, we generalize the formula for calculating nodal types in a fully binary setting, given in Chapter 2 as
2(2𝑛). More generally, for a node with 𝑚 possible values, and 𝑛 parents each of which has 𝑝 possible values,
the number of nodal types is 𝑚(𝑝𝑛). For 𝑆, this becomes 3(22).

71



3.3 Development and Democratization

Przeworski and Limongi (1997) argue that democratization occurs for reasons that are largely
idiosyncratic (i.e., not driven by socioeconomic or macro-structural conditions); but once a
country has democratized, a higher level of economic development makes democracy more
likely to survive. Economic development thus affects whether or not a country is a democracy,
but only after a democratic transition has occurred, not before. Thus, in their description—
and contrary to Boix (2003) —democratization is “exogenous”: it is not determined by other
variables in the model. The dynamic component of Przeworski and Limongi’s argument—the
fact that both the presence of democracy and the causal effect of development on democracy
depend on whether a democratic transition occurred at a previous point in time—forces us to
think about how to capture over-time processes in a causal model.

We represent Przeworski and Limongi’s argument in the DAG in Figure 3.3. The first thing to
note is that we can capture dynamics by considering democracy at different points in time as
separate nodes. According to the graph, whether a country is a democracy in a given period
(𝐷𝑡) is a function, jointly, of whether it was a democracy in the previous period (𝐷𝑡−1) and of
the level of per capita GDP in the previous period, as well as of other unspecified forces 𝜃𝐷𝑡

(not pictured).

Dt−1 : Democracy, time t−1

Yt−1 : GDP per capita, time t−1

Dt : Democracy, time t

Democratization (Przeworski and Limongi, 1997)

Figure 3.3: A graphical representation of Przeworski and Limongi’s argument.

Second, the arrow running from 𝑌𝑡−1 to 𝐷𝑡 means that 𝑌 may affect the presence of democracy,
not that it always (or certainly) does. Indeed, Przeworski and Limongi’s argument is that
development’s effect on democracy depends on a regime’s prior state: GDP matters for whether
democracies continue to be democracies, but not for whether autocracies go on to become
democracies. The absence of an arrow between 𝐷𝑡−1 and 𝑌𝑡−1, however, implies a (possibly
incorrect) belief that democracy and last period GDP are independent of one another.
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This claim implies an asymmetric effect of national income on regime type: High GDP per
capita can prevent a democratic state from reverting to autocracy, according to Przeworski and
Limongi, but it cannot cause an autocracy to become a democracy. Interestingly, this argument
means that even though high national income cannot cause a state to transition to democracy,
it can still cause a state to be democratic. The posited causal effect is best understood in
counterfactual terms: a democracy with high per capita GDP would have reverted to autocracy
if it had had low per capita GDP. The argument might also be expressed as an interaction: If
a state was an autocracy in the previous period, then GDP will have no effect on its regime
type in the current period; national income has an effect only on states that were democracies
in the previous period. The graph allows for this interaction—in making the current regime
type dependent both on GDP and prior regime type—but the type of interaction would need
to be specified in a causal function.

For a parametric representation of this asymmetric relationship, we can specify a function in
which GDP can reduce the likelihood of a transition away from democracy but has no effect on
the probability of a transition to democracy, which is exogenously determined. One possible
causal function that captures this argument is:

𝐷𝑡 = 𝟙(𝜃𝐷𝑡 < (1 − 𝐷𝑡−1)𝑝 + 𝐷𝑡−1𝑌𝑡−1𝑞))

where

• 𝐷𝑡 and 𝐷𝑡−1 are binary nodes representing current and last-period democracy, respec-
tively

• 𝑌𝑡−1 represents national per capita GDP in the previous period, scaled to 0-1.
• 𝑝 is a parameter representing the probability that an autocracy democratizes
• 𝑞 is a parameter representing the probability that a democracy with 𝑌𝑡−1 = 1 remains

democratic
• 𝜃𝐷𝑡 represents a random, additional input into whether or not a state is democratic; we

might think of this as distributed uniformly over [0, 1].
• The indicator function, 𝟙, evaluates the inequality and generates a value of 1 if and only

if it is true

Unpacking the equation, the likelihood that a country is a democracy in a given period rises
and falls with the expression to the right of the inequality operator. This expression itself
has two parts, reflecting the difference between the determinants of transitions to democracy
(captured by the first part) and the determinants of democratic survival (captured by the
second). The first part comes into play—that is, non-zero—only for non-democracies in the last
period. For non-democracies, the expression evaluates simply to 𝑝, the exogenous probability
of democratization. The second part is non-zero only for democracies, where it evaluates
to 𝑞 times 𝑌𝑡−1: thus, remaining democratic is more likely as national income rises. The
inequality is then evaluated by asking whether the expression on the left passes a threshold,
𝜃𝐷𝑡 . Thus, higher values for the expression on the left increase the likelihood of democracy
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while the randomness of the 𝜃𝐷𝑡 threshold captures the role of other, idiosyncratic inputs. The
mean and variance of 𝜃𝐷𝑡 capture the overall likelihood of being a democracy as well as the
importance of unspecified factors.4 In a model like this, it would be natural to seek to estimate
parameters 𝑝 and 𝑞 as well as try to understand the distribution of 𝜃𝐷𝑡 .

We can also, of course, represent the asymmetry in a binary setup with nodal types. Specifically,
nodal type 𝜃𝐷𝑡

0001 represents a causal effect in which a democracy will remain democratic if it is
wealthy, but will become authoritarian if it is not wealthy: 𝐷𝑡 = 1 if both of its parents, 𝑌𝑡−1
and 𝐷𝑡−1, equal 1, and 𝐷𝑡 = 0 if either of its parents are 0. We can see here the clear causal
effect of 𝑌𝑡−1 for a country that was a democracy (i.e., 𝐷𝑡−1 = 1): for such a unit, changing
𝑌𝑡−1 to 0 would change that country from a democracy to a non-democracy in the current
period. We can also see, under this nodal type, that for a country that was not a democracy
last period (𝐷𝑡−1 = 0), changing GDP will have no effect. Consider, in contrast, a 𝜃𝐷𝑡

0011 type:
under this alternative nodal type, a non-democracy becomes a democracy if national income
goes from low to high.

Again, we can express our beliefs in the prevalence or likelihood of different causal effects on
democracy by assigning a probability distribution over 𝐷𝑡’s 16 possible nodal types.

Although we do not engage with dynamic models in this book, this model provides a useful
opportunity for thinking through the implications of a given distribution of nodal types for
a dynamic process. Imagine a setup in which, in each period, one half of units were of type
𝜃𝐷𝑡

0001, and one half of type 𝜃𝐷𝑡
1111, meaning that they will be democracies in the current period

regardless of income level or prior regime status (with each unit’s type assigned afresh in each
period). Suppose, further, that all units’ income level remains constant over time. Now, say
that in an initial period, half the units were democracies, half the units had high income, and
there was no correlation between these two features or between these features and nodal type.
So half the democracies were high-income, half low-income; half the non-democracies were
high-income, half low-income; and the two nodal types are also distributed equally among all
regime/income combinations.

How does this setup evolve over time? In particular, what happens over time to the association
between income level and regime type? In the next period, half of the cases—the half that are
of the 𝜃𝐷𝑡

1111 type—will be democracies regardless of their income level: half of these will be
surviving democracies and the other half new democracies, simply because half of the cases
of each type were initially democracies. Further, half of this set of democracies will be high-
income democracies, simply because half of the 𝜃𝐷𝑡

1111 cases were high-income, and income is
constant.

4Note how, while the causal function nails down certain features of the process, it leaves others up for grabs.
In particular, the parameters 𝑝 and 𝑞 are assumed to be constant for all autocracies and for all democracies,
respectively, but their values are left unspecified. And one could readily write down a function that left even
more openness—by, for instance, including an unknown parameter that translates 𝑦 into a change in the
probability of reversion or allowing for nonlinearities.
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Of the other half of cases—the 𝜃𝐷𝑡
0001 types—one quarter will be surviving democracies that

survived because of their income: These are the quarter of the 𝜃𝐷𝑡
0001 types that were both

democracies and high-income at the outset. The other three quarters will be autocracies: the
quarter of the 𝜃𝐷𝑡

0001 types that were low-income democracies will be “backsliders,” becoming
autocracies because of their poverty; and half of the 𝜃𝐷𝑡

0001 types that were autocracies at the
outset will stay autocracies regardless of income level, as all autocracies of this nodal type
do.

So now, a larger share of democracies are high-income. Initially, half of the democracies were
high-income. Now half of the 𝜃𝐷𝑡

1111 democracies are high income (half of all cases), but all of
the 𝜃𝐷𝑡

0001 democracies are high-income (one-eighth of all cases). So now 0.6 of all democracies
are high-income. Similarly, the backsliding process boosts the share of autocracies that are
low-income, from one half to two thirds.

With a fresh type draw for each unit after each round—randomly transitioning some countries
into democracies—we get a similar sorting process in future periods. Each period, some
autocracies become democracies, with the high-income ones remaining democracies and the
low-income ones remaining democracies only if they get assigned to the “always democratic”
type (𝜃𝐷𝑡

1111). Eventually, the system converges on a joint distribution in which wealthy states
are all stable democracies and the poorer states transition back and forth between democracy
and autocracy across periods—not a terrible approximation of the global state of affairs in the
contemporary era.
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4 Causal Queries

Chapter summary

We describe major families of causal questions and illustrate how these can all be de-
scribed as queries about the values of nodes in a causal model.

Although scholars share a broad common interest in causality, there is tremendous hetero-
geneity in the kinds of causal questions that scholars ask. Consider the relationship between
inequality and democratization. We might seek to know inequality’s average impact on democ-
ratization across some broad set of cases. Alternatively, we might be interested in a particular
case—say, Mongolia in 1995—and want to know whether inequality would have had an effect
in this case. Or we might wonder whether the level of democracy in Mongolia in 1995 is due
to the level of inequality in that case—yet another distinct question (in the same way that
establishing that poison would make you sick does not imply that you are sick because of
poison). In a different vein, we might be interested in how causal effects unfold, inquiring
about the pathway or mechanism through which inequality affects democratization—a ques-
tion we can also ask at two levels. We can ask whether inequality affected democratization in
Mongolia through mobilization of the masses; or we can ask how commonly, across a broad
set of cases, inequality affects democratization through mobilization of the masses. Pushing
further, we might ask a counterfactual question of the form: Would inequality have produced
democratization had mobilization been prevented from occurring?

Distinct methodological literatures have been devoted to the study of average causal effects, the
analysis of case-level causal effects and explanations, and the identification of causal pathways.
Fortunately, each of these questions can be readily captured as specific queries asked of (and
answerable from) a causal model. As described by Pearl (2010), the goal is to deploy an
“algorithm that receives a model M as an input and delivers the desired quantity Q(M) as the
output.” More specifically, we demonstrate how, given a model as described in Chapter 2, a
causal query can be represented as a question about the exogenous nodes on a causal graph
(𝜃). When we assimilate our causal questions into a causal model, we are placing what we
want to know in formal relation to both what we already know and what we can potentially
observe. As we will see in later chapters, this move allows us then to deploy a model to generate
strategies of inference: To determine which observations, if we made them, would be likely to
yield the greatest leverage on our query, given our prior knowledge about the way the world
works. And by the same logic, once we see the evidence, this integration allows us to “update”
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on our query—to figure out in a systematic fashion what we have learned—in a manner that
takes background knowledge into account.

In the remainder of this chapter, we walk through the conceptualization and causal-model
interpretation of four key causal queries:

• Case-level Causal Effects

• Case-level causal attribution

• Average causal effects

• Causal pathways

These queries are in no way exhaustive of the causal questions that can be captured in causal
graphs, but they are among the more common foci of social scientific investigation. In Ap-
pendix, we describe a still richer set of queries, including “actual causes,” and we show how
the CausalQueries software package implements a general procedure for mapping queries onto
causal types.

4.1 Case-Level Causal Effects

The simplest causal question is whether some causal effect operates in an individual case. Does
𝑋 have an effect on 𝑌 in this case? For instance, is Yemen in 1995 a case in which a change
in economic inequality would produce a change in whether or not the country democratizes?
We could put the question more specifically as a query about a causal effect in a particular
direction, for instance: Does inequality have a positive effect on democratization in the case
of Yemen in 1995?

In counterfactual terms, a query about case-level causation is a question about what would
happen if we could manipulate a variable in the case: If we could hypothetically intervene to
change 𝑋’s value in the case, (how) would 𝑌 ’s value change? To ask, more specifically, whether
a positive or negative effect operates for a case is to ask whether a particular counterfactual
relation holds in that case.

Consider the model in Figure 4.1. As introduced in Chapter 2, 𝜃𝑌 here represents the nodal
type characterizing 𝑌 ’s response to 𝑋 and, if 𝑋 and 𝑌 are binary, it can take on one of
four values in this model: 𝜃𝑌

10, 𝜃𝑌
01, 𝜃𝑌

00, and 𝜃𝑌
11 (which map onto our 𝑎, 𝑏, 𝑐, and 𝑑 types,

respectively).

In this model, then, the query, “What is 𝑋’s causal effect in this case?” simply becomes a
question about the value of the nodal type 𝜃𝑌 . If 𝜃𝑌 = 𝜃𝑌

10, for instance, this implies that 𝑋
has a negative effect on 𝑌 in this case. If 𝜃𝑌 = 𝜃𝑌

00, this implies that 𝑋 has no effect on 𝑌 in
this case and that 𝑌 will always be 0.
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A DAG capturing a case−level causal effect

Figure 4.1: A DAG that indicates how the effect of 𝑋 on 𝑌 in a given case depends on the
case’s nodal type represented by 𝜃𝑌 .

We can also pose probabilistic versions of a case-level causal effect query. For instance, we
can ask, “What is the probability that 𝑋 has a positive effect on 𝑌 in this case?” Answering
this question requires assessing the probability that 𝜃𝑌 = 𝜃𝑌

01.1 We can also ask, “What is the
probability that 𝑋 matters for 𝑌 in this case?” Answering this question involves adding the
probability that 𝑋 has a positive effect to the probability that it has a negative effect. That
is, it involves adding the probability that 𝜃𝑌 = 𝜃𝑌

01 to the probability that 𝜃𝑌 = 𝜃𝑌
10. And we

can ask, “What is the expected effect of 𝑋 on 𝑌 in this case?” To answer this question, we
need to estimate the probability that 𝑋 has a positive effect minus the probability that it has
a negative effect.

In sum, when posing probabilistic questions about case-level causal effects, we are still asking
about the value of a 𝜃 term in our model—but we are asking about the probability of the 𝜃
term taking on some value or set of values. In practice, we will in this book most often be
posing case-level causal-effect queries in probabilistic form.

We can conceptualize questions about case-level causal effects as questions about 𝜃 terms even
if our model involves more complex relations between 𝑋 and 𝑌 . The question itself does not
depend on the model having any particular form. For instance, consider a mediation model
of the form 𝑋 → 𝑀 → 𝑌 . In this model, a positive effect of 𝑋 on 𝑌 can emerge in two ways.
A positive 𝑋 → 𝑌 effect can emerge from a positive effect of 𝑋 on 𝑀 followed by a positive

1A little more carefully: Insofar as we believe the effect is either positive or it is not, the true answer to the
question—the estimand—is a yes or a no; the probability is an answer that captures our beliefs about the
estimand. Alternatively, we could imagine asking about the share of a population for which a positive effect
operates, a type of query that we use quite a bit later in the book.
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effect of 𝑀 on 𝑌 . Yet we will also get a positive 𝑋 → 𝑌 effect from a sequence of negative
intermediate effects: If an increase in 𝑋 causes a decrease in 𝑀 , while a decrease in 𝑀 causes
an increase in 𝑌 , then an increase in 𝑋 will yield an increase in 𝑌 .

Thus, there are two chains of intermediate effects that will generate a positive effect of 𝑋
on 𝑌 . Therefore, in this mediation model, the question, “What is the probability that 𝑋
has a positive effect on 𝑌 in this case?” is asking whether either of those combinations of
intermediate effects is operation. Specifically, we are asking about the following probability:

Pr((𝜃𝑀 = 𝜃𝑀
01&𝜃𝑌 = 𝜃𝑌

01) OR (𝜃𝑀 = 𝜃𝑀
10&𝜃𝑌 = 𝜃𝑌

10)) (4.1)

In a similar way, a negative effect of 𝑋 on 𝑌 can emerge from a chain of opposite-signed effects:
either positive 𝑋 → 𝑀 and then negative 𝑀 → 𝑌 , or negative 𝑋 → 𝑀 and then positive
𝑀 → 𝑌 . Thus, to ask, “What is the probability that 𝑋 has a negative effect on 𝑌 in this
case?” is to ask about the following probability:

Pr((𝜃𝑀 = 𝜃𝑀
01&𝜃𝑌 = 𝜃𝑌

10) OR (𝜃𝑀 = 𝜃𝑀
10&𝜃𝑌 = 𝜃𝑌

01)) (4.2)

Finally, to ask about the expected effect of 𝑋 on 𝑌 in a case is to ask about the first probability
(of a positive effect) minus the second (of a negative effect).

Notice that working with this more complex mediation model required us first to figure out
which combinations of intermediate causal effects would generate the overall effect of 𝑋 on 𝑌
that we were interested in. Mapping from sets of 𝑋 → 𝑀 and 𝑀 → 𝑌 effects to the 𝑋 → 𝑌
effects that they yield allowed us to figure out which 𝜃𝑀 and 𝜃𝑌 values correspond to the
overall effect that we are asking about. We will make use of these kinds of mappings at many
points in this book. But for now the key point is that, regardless of the complexity of a model,
we can always pose questions about case-level causal effects as questions about a case’s nodal
types or about the probability of it having a given set of nodal types.

4.2 Case-Level Causal Attribution

A query about causal attribution is closely related to, but different from, a query about a
case-level causal effect. When asking about 𝑋’s case-level effect, we are asking, “Would a
change in 𝑋 cause a change in 𝑌 in this case?” The question of causal attribution asks: “Did
𝑋 cause 𝑌 to take on the value it did in this case?” More precisely, we are asking, “Given the
values that 𝑋 and 𝑌 in fact took on in this case, would 𝑌 ’s value have been different if 𝑋’s
value had been different?”

Consider an example. We know that inequality in Taiwan was relatively low and that Taiwan
democratized in 1996, but was low inequality a cause of Taiwan’s democratization in 1996?
Equivalently: Given low economic inequality and democratization in Taiwan in 1996, would
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the outcome in this case have been different if inequality had been high? Notice that, when
asking a causal attribution question, we are conditioning on the 𝑋 and 𝑌 values that we in
fact observe in the case.

Another way to put the point is that, when asking about causal attribution, we have already
narrowed down the set of possible nodal types by observing the realized values of some nodes
in the case of interest. For the simple 𝑋 → 𝑌 model in Figure 4.1, if we observe 𝑋 = 1
and 𝑌 = 1 in the case at hand, then we know that either 𝑋 had a positive effect on 𝑌 in
this case or this is a case in which 𝑌 = 1 regardless of 𝑋’s value. So only two nodal types
for 𝑌 are potentially in play: 𝜃𝑌

01 and 𝜃𝑌
11. So the attribution question is: Given we know

that 𝜃𝑌 ∈ {𝜃𝑌
01, 𝜃𝑌

11}, does 𝜃𝑌 = 𝜃𝑌
01? Or, probabilistically: What is Pr(𝜃𝑌 = 𝜃𝑌

01) given that
𝜃𝑌 ∈ {𝜃𝑌

01, 𝜃𝑌
11}?

This query can be still defined as statements about nodal types when models are more complex.
We may often think about matters of causal attribution in situations in which another potential
cause of the outcome presents itself, and we want to know whether we can attribute the
outcome to one condition or the other (or to both). Consider the slightly more complex setup
in Figure 4.2. Here, 𝑌 is a function of two variables, 𝑋1 and 𝑋2. This means that 𝜃𝑌 is
somewhat more complicated than in a setup with one causal variable: 𝜃𝑌 must here define 𝑌 ’s
response to all possible combinations of 𝑋1 and 𝑋2, including interactions between them.

X1

X2

Y

θY

Did X=1 cause Y = 1?

Figure 4.2: A causal model in which 𝑌 depends on two variables 𝑋 − 1 and 𝑋 − 2.

With this model, a query about causal attribution—whether 𝑋1 = 1 caused 𝑌 = 1—can take
account of the value of 𝑋2. Parallel to our Taiwan example, suppose that we have a case in
which 𝑌 = 1 and in which 𝑋1 was also 1, and we want to know whether 𝑋1 caused 𝑌 to take
on the value it did. Answering this question requires knowing whether the case’s type is such
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that 𝑋1 would have had a positive causal effect on 𝑌 , given what we know about 𝑋2—which
we can think of as part of the context.

In this setup, we can answer the query by consulting the characterization of nodal types for a
two-parent node that we provided in Table 2.3. From that table, we can figure out for which
nodal types 𝑋1 has a positive effect on 𝑌 given a particular value of 𝑋2.

Suppose that in the case at hand we observe 𝑋2 = 1. In Table 2.3, we can then see that we
have four rows—rows 9 to 12—in which 𝑌 goes from 0 to 1 as 𝑋1 goes from 0 to 1 while 𝑋2 is
fixed at 1. (The key columns here are the third and fourth, where for these rows we see that 𝑌
goes from 0 to 1 as we go from the third to the fourth column.) These four rows represent the
four 𝑌 -nodal-types: 𝜃𝑌

0001, 𝜃𝑌
1001, 𝜃𝑌

0101, and 𝜃𝑌
1101. In other words, we can attribute a 𝑌 = 1

outcome to 𝑋1 = 1 if we are in the context 𝜃𝑋2 = 𝜃𝑋2
1 and 𝜃𝑌 is one of these four nodal

types.

The probability that 𝑋1 = 1 caused 𝑌 = 1 given 𝑋1 = 1, 𝑋2 = 1, and 𝑌 = 1 is the probability
of these four types divided by the probability that 𝑌 = 1 given 𝑋1 = 1 and 𝑋2 = 1. The
latter probability is the probability of being in the last eight rows of Table 2.3, which are the
eight 𝑌 -nodal types consistent with the observation of 𝑋1 = 1, 𝑋2 = 1, and 𝑌 = 1.

Thus, a question about causal attribution is a question not just about how a case would behave
given an intervention, but a question that conditions on observed node values in the case—and
then asks how the outcome would have been different if circumstances had been different from
what we know them to have been in this case.

4.3 Average Causal Effects

While the queries we have considered so far operate at the case level, we can also pose causal
queries at the level of populations. One of the most common population-level queries is a
question about an average causal effect. In counterfactual terms, a question about average
causal effects is: If we manipulated the value of 𝑋 for all cases in the population—first setting
𝑋 to one value for all cases, then changing it to another value for all cases—by how much
would the average value of 𝑌 in the population change? Like other causal queries, a query
about an average causal effect can be conceptualized as learning about a node in a causal
model.

We can do this by conceiving of any given case as being a member of a population with each
unit endowed with nodal types. When we seek to estimate an average causal effect, we seek
information about the proportions or shares of these nodal types in the population.

More formally and adapted from Humphreys and Jacobs (2015), we can use 𝜆𝑌
𝑖𝑗 to refer to

the share of cases in a population that has nodal type 𝜃𝑌
𝑖𝑗. Thus, given our four nodal types

in a two-variable binary setup, 𝜆𝑌
10 is the proportion of cases in the population with negative

effects; 𝜆01 is the proportion of cases with positive effects; and so on. One nice feature of this
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setup, with both 𝑋 and 𝑌 as binary, is that the average causal effect can be simply calculated
as the share of positive-effect cases minus the share of negative-effect cases: 𝜆𝑌

01 − 𝜆𝑌
10.

Graphically, we can represent this setup by including 𝜆𝑌 in a more complex causal graph as
in Figure 4.3. We might think of this graph as standing in for a still more complex graph in
which we replicate the 𝑋 → 𝑌 ← 𝜃𝑌 graph for as many units as we have and have 𝜆𝑌 point
into each 𝜃𝑌 (see Figure 9.2 for an example).

As in our setup for case-level causal effects, 𝑋’s effect on 𝑌 in a case depends on (and only
on) the case’s nodal type, 𝜃𝑌 . The key difference is that we now model the case’s type not
as exogenously given, but as a function of two additional variables: the distribution of nodal
types in a population and a random process through which the case’s type is “drawn” from that
distribution. We represent the type distribution as 𝜆𝑌 : a vector of values for the proportions
𝜆𝑌

10, 𝜆𝑌
01, 𝜆𝑌

00, 𝜆𝑌
11. We represent the random process for drawing a case’s 𝜃𝑌 value from that

distribution as 𝑈𝜃𝑌 .

In practice, it is the components of 𝜆𝑌 —the shares of different nodal types in the population—
that will be of substantive interest. In this model, our causal query—about 𝑋’s average causal
effect—is defined by the shares of negative- and positive-causal-effect cases, respectively, in
the population. “What is 𝑋’s average effect on 𝑌 ?” amounts to asking: What are the values
of 𝜆𝑌

10 and 𝜆𝑌
01? As with 𝜃𝑌 , 𝜆𝑌 is not directly observable. And so the empirical challenge—to

which we devote later parts of this book—is to figure out what we can observe that would
allow us to learn about 𝜆𝑌 ’s component values?2

We can, of course, likewise pose queries about other population-level causal quantities. For
instance, we could ask for what proportion of cases in the population 𝑋 has a positive effect?
This would be equivalent to asking the value of 𝜆𝑌

01, one element of the 𝜆𝑌 vector. Or we
could ask about the proportion of cases in which 𝑋 has no effect, which would be asking about
𝜆𝑌

00 + 𝜆𝑌
11, capturing the two ways in which there can be zero effect.

We can also ask conditional queries about average effects. For instance, for the DAG in
Figure 4.2 with two causal variables, we can ask what is the average causal effect of 𝑋1 on 𝑌
for units in which 𝑋2 = 1. In this model, 𝜆 is a 16-element vector, with a share for each of 𝑌 ’s
16 nodal types, covering all possible joint effects of 𝑋1 and 𝑋2. So this query, conditioning
on 𝑋1, asks about the difference between the proportion of the population that is of a type in
which 𝑋1 has a positive effect when 𝑋2 = 1 and the proportion in which 𝑋1 has a negative
effect when 𝑋2 = 1.3

2Note also that 𝜆𝑌 can be thought of as itself drawn from a distribution, such as a Dirichlet. The hyperpa-
rameters of this underlying distribution of 𝜆 would then represent our uncertainty over 𝜆 and hence over
average causal effects in the population.

3As we discuss at greater length in Section 9.3.2 of Chapter 9, this conditional average effect query is subtly
different from a case-level query about an observed case with a particular value on a variable. A case-level
query might take the form: What would we believe the causal effect of 𝑋1 on 𝑌 to be in a case randomly
drawn from the population in which we observed 𝑋2 = 1. In this latter query, the observation of a unit with
particular features might provide information that would allow us to update on 𝜆—that is, on what kind of
world we are in. The conditional average effect query, in contrast, assumes a distribution over 𝜆 and simply
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X Y

θY

λY UθY

Nodal type drawn from a parameterized distribution

Figure 4.3: A causal model in which cases are drawn from a heterogeneous population. Here
𝜆 parameterizes the multinomial distribution of nodal types in the population.

4.4 Causal Paths

To develop richer causal understandings, researchers often seek to describe the causal path or
paths through which effects propagate. Consider the DAG in Figure 4.4, in which 𝑋 can affect
𝑌 through two possible pathways: directly and via 𝑀 . Assume again that all variables are
binary, taking on values of 0 or 1. Here, we have nodal types defining 𝑀 ’s response to 𝑋 (𝜃𝑀)
and nodal types defining 𝑌 ’s response to both 𝑋 (directly) and 𝑀 (𝜃𝑌 ).

Suppose that we observe 𝑋 = 1 and 𝑌 = 1 in a case. Suppose, further, that we have reasonable
confidence that 𝑋 has had a positive effect on 𝑌 in this case. We may nonetheless be interested
in knowing whether that causal effect ran through 𝑀 . We will refer to this as a query about a
causal path. Importantly, a causal path query is not satisfied simply by asking whether some
mediating event along the path occurred. We cannot, for instance, establish that the top path
in Figure 4.4 was operative simply by determining the value of 𝑀 in this case—though that
will likely be useful information.

Rather, the question of whether the mediated (via 𝑀) causal path is operative is a composite
question of two parts: First, does 𝑋 have an effect on 𝑀 in this case? Second, does that
effect—the difference in 𝑀 ’s value caused by a change in 𝑋—in turn cause a change in 𝑌 ’s

queries that distribution.
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value? In other words, what we want to know is whether the effect of 𝑋 on 𝑌 depends on—that
is, will not operate without—the effect of 𝑋 on 𝑀 .

We take the question of whether a path is operative in producing an effect as the same as
the question of whether there is an indirect effect as asked in mediation analysis. Indeed as
emphasized in mediation analysis there are two types of “indirect effects” of 𝑋 on 𝑌 via 𝑀
(when 𝑋 is fixed at 𝑋 = 0 and at 𝑋 = 1), and similarly two types of “direct” effects (when 𝑀
is fixed at 𝑀(𝑋 = 0) and at 𝑀(𝑋 = 1)).
Using potential outcomes notation, a positive indirect effect would be present (for 𝑥 ∈ {0, 1})
if:

𝑌 (𝑋 = 𝑥, 𝑀 = 𝑀(𝑋 = 1)) > 𝑌 (𝑋 = 𝑥, 𝑀 = 𝑀(𝑋 = 0)).

Written using causal functions this is:

𝑓𝑌 (𝑋 = 𝑥, 𝑀 = 𝑓𝑀(𝑋 = 1, 𝜃𝑀), 𝜃𝑌 ) > 𝑓𝑌 (𝑋 = 𝑥, 𝑀 = 𝑓𝑀(𝑋 = 0, 𝜃𝑀), 𝜃𝑌 )).

Both expressions ask whether there would be an increase in the value of 𝑌 if 𝑀 were to change
in the way that it would change due to a change in 𝑋, but without an actual change in 𝑋
(see Pearl (2009), p 132, Imai, Keele, and Tingley (2010)). Note there are two versions of this
query, one for 𝑥 = 0 (holding X constant at 0) and one for 𝑥 = 1 (holding X constant at 1).

Similarly, a positive direct effect would be present if:

𝑓𝑌 (𝑋 = 1, 𝑀 = 𝑓𝑀(𝑋 = 𝑥, 𝜃𝑀), 𝜃𝑌 ) > 𝑓𝑌 (𝑋 = 0, 𝑀 = 𝑓𝑀(𝑋 = 𝑥, 𝜃𝑀), 𝜃𝑌 ))

.

Again there are two versions of the query, one for 𝑥 = 0 and one for 𝑥 = 1.

From these expressions we can see that, asking whether a causal effect operated via a given
path is in fact asking about a specific set of causal effects lying along that path, as captured
by 𝜃𝑀 and 𝜃𝑌 .

We now work through the logic that links queries to nodal types 𝜃𝑀 and 𝜃𝑌 , focusing on
positive effects of 𝑋 on 𝑌 that work through 𝑀 for a case with 𝑋 = 1.

First, note that there are two sequences of effects that would allow 𝑋’s positive effect on 𝑌 to
operate via 𝑀 : (1) 𝑋 has a positive effect on 𝑀 , which in turn has a positive effect on 𝑌 ; or
(2) 𝑋 has a negative effect on 𝑀 , which in turn has a negative effect on 𝑌 .

The first question then is whether 𝑋 affects 𝑀 in this case. This is a question about the value
of 𝜃𝑀 . We know that 𝜃𝑀 can take on four possible values corresponding to the four possible
responses to 𝑋: 𝜃𝑀

10, 𝜃𝑀
01, 𝜃𝑀

00, 𝜃𝑀
11. For sequence (1) to operate, 𝜃𝑀 must take on the value 𝜃𝑀

01,
representing a positive effect of 𝑋 on 𝑀 . For sequence (2) to operate, 𝜃𝑀 must take on the
value 𝜃𝑀

10, representing a negative effect of 𝑋 on 𝑀 .
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A DAG with two causal paths

Figure 4.4: 𝑋 affects 𝑌 both directly and indirectly through 𝑀 .

Next, note that 𝜃𝑌 defines 𝑌 ’s response to different combinations of both 𝑋 and 𝑀—since
both of these variables point directly into 𝑌 . Given that 𝑌 has two binary parents, there are
16 possible values for 𝜃𝑌 —again as shown earlier in Table 2.3, simply substituting 𝑋 and 𝑀
for 𝑋1 and 𝑋2. Note that these 16 nodal types capture the full range of causal possibilities.
For instance, they allow for 𝑀 to affect 𝑌 and, thus, to potentially pass on a mediated effect
of 𝑋. They allow for 𝑋 to have a direct, unmediated effect on 𝑌 . And there are nodal types
in which 𝑋 and 𝑀 interact in affecting 𝑌 .

What values of 𝜃𝑌 then are compatible with the operation of a positive effect of 𝑋 on 𝑌 via
𝑀? Let us first consider this question with respect to sequence (1), in which 𝑋 has a positive
effect on 𝑀 , and that positive effect is necessary for 𝑋’s positive effect on 𝑌 to occur. For this
sequence to operate, as we have said, 𝜃𝑀 must take on the value of 𝜃𝑀

01. When it comes to 𝜃𝑌 ,
then, what we need to look for are types in which 𝑋’s effect on 𝑌 depends on 𝑀 ’s taking on
the values it does as a result of 𝑋’s positive effect on 𝑀 .

We are thus looking for nodal types for 𝑌 that capture two kinds of counterfactual causal
relations operating on nodes. First, 𝑋 must have a positive effect on 𝑌 when 𝑀 undergoes
the change that results from 𝑋’s positive effect on 𝑀 . This condition ensures simply that 𝑋
has the required effect on 𝑌 in the presence of 𝑋’s effect on 𝑀 . Second, that change in 𝑀 ,
generated by a change in 𝑋, must be necessary for 𝑋’s positive effect on 𝑌 to operate. This
condition specifies the path, ensuring that 𝑋’s effect actually runs through (i.e., depends on)
its effect on 𝑀 .

1. Is 𝑋 = 1 a counterfactual cause of 𝑌 = 1, given 𝑋’s positive effect on 𝑀? Establishing
this positive effect of 𝑋 involves two queries:
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a) Where 𝑋 = 0, does 𝑌 = 0? As we are assuming 𝑋 has a positive effect on 𝑀 , if 𝑋 = 0
then 𝑀 = 0 as well. So, we need that 𝑌 = 0 when 𝑋 = 0, 𝑀 = 0.

b) Where 𝑋 = 1, does 𝑌 = 1? Given 𝑋’s assumed positive effect on 𝑀 , 𝑀 = 1 under this
condition. So, we need 𝑌 = 1 when 𝑋 = 1, 𝑀 = 1.

2. Is 𝑋’s effect on 𝑀 necessary for 𝑋’s positive effect on 𝑌 ? That is, do we see 𝑌 = 1 only
if 𝑀 takes on the value that 𝑋 = 1 generates (which is 𝑀 = 1)? To determine this,
we inspect the counterfactual condition in which 𝑋 = 1 and 𝑀 = 0, and we ask: Does
𝑌 = 0? Thus we need 𝑌 = 0 when 𝑋 = 1 but 𝑀 = 0. In that case we know that 𝑀
changing to 1 when 𝑋 goes to 1 is necessary for 𝑋’s effect on 𝑌 to operate (i.e., that the
effect operates through the 𝑀 path).

We now have enough to identify the types of 𝜃𝑌 that answer the query. We again use notation
of the form 𝜃𝑌

𝑤𝑥𝑦𝑧 where:

• 𝑤 is the potential outcome for 𝑌 when (𝑋 = 0, 𝑀 = 0)
• 𝑥 is the potential outcome for 𝑌 when (𝑋 = 1, 𝑀 = 0)
• 𝑦 is the potential outcome for 𝑌 when (𝑋 = 0, 𝑀 = 1)
• 𝑧 is the potential outcome for 𝑌 when (𝑋 = 1, 𝑀 = 1)

The three conditions then imply that 𝑤 = 0 (condition 1a), 𝑧 = 1 (condition 1b), and 𝑥 = 0
(condition 2). This leaves us with only two qualifying nodal types for 𝑌 : 𝜃𝑌 = 𝜃0001 and
𝜃0011.

We can undertake the same exercise for when 𝑋 has a negative effect on 𝑀 , or 𝜃𝑀 = 𝜃𝑀
10.

Here, we adjust the three queries for 𝜃𝑌 to take account of this negative effect. Thus, we
adjust query 1a so that we are looking for 𝑌 = 0 when 𝑋 = 0 and 𝑀 = 1. In query 1b, we
look for 𝑌 = 1 when 𝑋 = 1 and 𝑀 = 0. And for query 2, we want types in which 𝑌 fails to
shift to 1 when 𝑋 shifts to 1 but 𝑀 stays at 1. Types 𝜃0100 and 𝜃1100 pass these three tests.

In sum, we can define this query about causal paths as a query about the value of 𝜃 terms on
the causal graph. For the graph in Figure 4.4, asking whether a positive effect of 𝑋 on 𝑌 for
an 𝑋 = 1 case runs via the 𝑀 -mediated path is asking whether one of four combinations of
𝜃𝑀 and 𝜃𝑌 holds in the case:

• 𝜃𝑀 = 𝜃𝑀
01 and (𝜃𝑌 = 𝜃0001 or 𝜃0011)

• 𝜃𝑀 = 𝜃𝑀
10 and (𝜃𝑌 = 𝜃0100 or 𝜃1100)

The same kind of exercise can be conducted for other pathway inquiries. Thus, Figure 4.5
shows the combinations of 𝜃𝑋 and 𝜃𝑌 that combine to make common pathway queries. Here
we distinguish between direct and indirect effects when there are and are not overall positive
effects. The figure highlights the counterintuitive fact that it is possible to have different types
of positive pathway effects without these producing an overall positive effect.4

4To choose one example, if 𝜃𝑀 = 𝜃𝑀
01 and 𝜃𝑌 = 𝜃𝑌

1001, then, 𝑌 would be 1 if either 𝑋 and 𝑀 were both 0
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Figure 4.5: Combinations of nodal types for 𝑀 and 𝑌 that generate direct indirect and overall
positive effects together. The four digits in the nodal type labels for 𝑌 correspond
to the potential outcomes for 𝑌 under four conditions: when 𝑋 ∶ 0 and 𝑀 ∶ 0 when
𝑋 ∶ 1 and 𝑀 ∶ 0 when 𝑋 ∶ 0 and 𝑀 ∶ 1 and when 𝑋 ∶ 1 and 𝑀 ∶ 1. The two digits
in the nodal type labels for 𝑀 correspond to the potential outcomes for 𝑀 when
𝑋 ∶ 0 and when 𝑋 ∶ 1.
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Finally, though stated here in terms of the case level types that answer a pathway query, it is
a conceptually small move to address population queries. As we did with average effects, these
can now be constructed as statements about the shares of a population that answer different
queries.

It is worth noting how different this formulation of the task of identifying causal pathways is
from widespread understandings of process tracing. Scholars commonly characterize process
tracing as a method in which we determine whether a mechanism was operating by establishing
whether the events that are lying along that path occurred. As a causal-model framework
makes clear, finding out that 𝑀 = 1 (or 𝑀 = 0, for that matter) does not establish what was
going on causally. Observing this intervening step does not by itself tell us what value 𝑀 would
have taken on if 𝑋 had taken on a different value, or whether this would have changed 𝑌 ’s
value. We need instead to conceive of the problem of identifying pathways as one of figuring
out the counterfactual response patterns of the variables along the causal chain.

4.5 Conclusion

For each of the causal queries we have described in this chapter, we have discussed several
types of causal questions that social scientists often pose to their data and have shown how
we can define these queries in terms of collections of nodal types on a causal graph.

In Appendix, we show how the mapping from causal questions to nodal types can be generalized
to many different types of queries (as the CausalQueries software package does). These
queries all involve summaries of the values of nodes given different types of interventions (or
the absence of interventions) on other nodes. But we highlight that it is not hard to expand
the set of queries still further to introduce broader, and more normative, considerations. Thus,
for instance, one might ask whether an effect is large enough to merit some investment or
whether the distribution of effects is justifiable given some normative considerations.

In connecting general queries to causal types, we prepare the ground for developing an empirical
research design. Nodal types cannot themselves be directly observed. However, as we will
demonstrate later in the book, defining causal queries as summaries of causal types, links
observable elements of a causal model to the unobservable objects of inquiry—allowing us to
use the former to draw inferences about the latter.

or if 𝑋 and 𝑀 were both 1. If 𝑋 were 1, then we would have 𝑀 = 1 and 𝑌 = 1, and 𝑀 = 1 because
𝑋 = 1. And, given 𝑋 = 1, 𝑌 = 1 only because 𝑀 = 1—which is due to 𝑋. Thus, there is an indirect effect.
However, had 𝑋 been 0 then 𝑀 would have been 0 and 𝑌 would have been 1 — so no overall effect.
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4.6 Chapter Appendix

4.6.1 Actual Causes

In the main text, we dealt with causes in the standard counterfactual sense: antecedent condi-
tions for which a change would have produced a different outcome. Sometimes, however, we are
interested in identifying antecedent conditions that were not counterfactual difference-makers
but that nonetheless generated or produced the outcome.

Though conceptually complex, queries of this form may be quite important for historical and
legal applications and so we give an overview of them here though point to Halpern (2016) for
an authoritative treatment of these ideas.

We will focus on situations in which an outcome was “overdetermined”: Multiple conditions
were present, each of which on their own, could have generated the outcome. Then, none of
these conditions caused the outcome in the counterfactual sense; yet one or more of them may
have been distinctively important in producing the outcome. The concept of an actual cause
can be useful in putting a finer point on this kind of causal question.

A motivating example used in much of the literature on actual causes (e.g., N. Hall 2004)
imagines two characters, Suzy and Billy, simultaneously throwing stones at a bottle. Both are
excellent shots and hit whatever they aim at. Suzy’s stone hits first, knocks over the bottle,
and the bottle breaks. However, Billy’s stone would have hit had Suzy’s not hit, and again
the bottle would have broken. Did Suzy’s throw cause the bottle to break? Did Billy’s?

By the usual definition of causal effects, neither Suzy’s nor Billy’s action had a causal effect:
Without either throw, the bottle would still have broken. We commonly encounter similar
situations in the social world. We observe, for instance, the onset of an economic crisis and
the breakout of war—either of which would be sufficient to cause the government’s downfall—
but with (say) the economic crisis occurring first and toppling the government before the war
could do so. In this situation, neither economic crisis nor war in fact made a difference to the
outcome: Take away either one and the outcome remains the same.

To return to the bottle example, while neither Suzy’s nor Billy’s throw is a counterfactual
cause, it just seems obvious that Suzy broke the bottle, and Billy did not. We can formalize
this intuition by defining Suzy’s throw as the actual cause of the outcome. Using the definition
provided by (Halpern 2015), building on (Halpern and Pearl 2005) and others, we say that a
condition (𝑋 taking on some value 𝑥) was an actual cause of an outcome (of 𝑌 taking on some
value 𝑦), where 𝑥 and 𝑦 may be collections of events, if:

1. 𝑋 = 𝑥 and 𝑌 = 𝑦 both happened;
2. there is some set of variables, 𝒲, such that if they were fixed at the levels that they

actually took on in the case, and if 𝑋 were to be changed, then 𝑌 would change (where
𝒲 can also be an empty set);
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3. no strict subset of 𝑋 satisfies 1 and 2 (there is no redundant part of the condition,
𝑋 = 𝑥).

The definition thus describes a condition that would have been a counterfactual cause of the
outcome if we were to imagine holding constant some set of events that in fact occurred (and
that, in reality, might not have been constant if the actual cause had not in fact occurred).

Let us now apply these three conditions to the Suzy and Billy example. Conditions 1 and 3
are easily satisfied, since Suzy did throw and the bottle did break (Condition 1), and “Suzy
threw” has no strict subsets (Condition 3).

Condition 2 is met if Suzy’s throw made a difference, counterfactually speaking—with the
important caveat that, in determining this, we are permitted to condition on (to fix in the
counterfactual comparison) any event or set of events that actually happened (or on none at
all). To see why Condition 2 is satisfied, we have to think of there being three steps in the
process: (1) Suzy and Billy throw, (2) Suzy’s or Billy’s rock hits the bottle, and (3) the bottle
breaks. In actuality, Billy’s stone did not hit the bottle, so we are allowed to condition on that
fact in determining whether Suzy’s throw was a counterfactual cause (even though we know
that Billy’s stone would have hit if Suzy’s hadn’t). Conditional on Billy’s stone not hitting,
the bottle would not have broken had Suzy not thrown.

From the perspective of counterfactual causation, it may seem odd to condition on Billy’s
stone not hitting the bottle when thinking about Suzy not throwing the stone—since Suzy’s
throwing the stone was the very thing that prevented Billy’s from hitting the bottle. It
feels close to conditioning on the bottle not being broken. Yet Halpern argues that this
is an acceptable thought experiment for establishing the importance of Suzy’s throw since
conditioning is constrained to the actual facts of the case. Moreover, the same logic shows why
Billy is not an actual cause. The reason is that Billy’s throw is only a cause in those conditions
in which Suzy did not hit the bottle. But because Suzy did actually hit the bottle, we are not
permitted to condition on Suzy not hitting the bottle in determining actual causation. We thus
cannot—even through conditioning on actually occurring events—construct any counterfactual
comparison in which Billy’s throw is a counterfactual cause of the bottle’s breaking.

The striking result here is that there can be grounds to claim that a condition was the actual
cause of an outcome even though, under the counterfactual definition, the effect of that con-
dition on the outcome is 0. (At the same time, all counterfactual causes are automatically
actual causes; they meet Condition 2 by conditioning on nothing at all, an empty set 𝒲.)
One immediate methodological implication follows: Since actual causes need not be causes,
there are risks in research designs that seek to understand causal effects by tracing back actual
causes—that is, the way things actually happened. If we traced back from the breaking of
the bottle, we might be tempted to identify Suzy’s throw as the cause of the outcome. We
would be right only in an actual-causal sense, but wrong in the standard, counterfactual causal
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sense. Chains of events that appear to “generate” an outcome are not always causes in the
counterfactual sense.5

As with other causal queries, the question “Was 𝑋 = 𝑥 the actual cause of 𝑌 = 𝑦?” can be
redefined as a question about which combinations of nodal types produce conditions under
which 𝑋 could have made a difference. To see how, let us run through the Billy and Suzy
example again, but formally in terms of a model. Consider Figure 4.6, where we represent
Suzy’s throw (𝑆), Billy’s throw (𝐵), Suzy’s rock hitting the bottle (𝐻𝑆), Billy’s rock hitting the
bottle (𝐻𝐵), and the bottle cracking (𝐶). Each endogenous variable has a 𝜃 term associated
with it, capturing its nodal type. We capture the possible “preemption” effect with the arrow
pointing from 𝐻𝑆 to 𝐻𝐵, allowing whether Suzy’s rock hits to affect whether Billy’s rock
hits.6

For Suzy’s throw to be an actual cause of the bottle’s cracking, we need first to establish that
Suzy threw (𝜃𝑆 = 𝜃𝑆

1 ) and that the bottle cracked (𝐶 = 1) (Condition 1). Condition 3 is
automatically satisfied in that 𝜃𝑆 = 𝜃𝑆

1 has no strict subsets. Turning now to Condition 2, we
need Suzy’s throw to be a counterfactual cause of the bottle cracking if we condition on the
value of some set of nodes remaining fixed at the values they in fact took on. As discussed
above, we know that we can meet this criterion if we condition on Billy’s throw not hitting.
To make this work, we need to ensure, first, that Suzy’s throw hits if and only if she throws;
so 𝜃𝐻𝑆 = 𝜃𝐻𝑆

01 . Next, we need to ensure that Billy’s throw does not hit whenever Suzy’s does:
This corresponds to any of the four nodal types for 𝐻𝐵 that take the form 𝜃𝐻𝐵

𝑥𝑥00. Those last
two zeroes in the subscript mean simply that 𝐻𝐵 = 0 whenever 𝐻𝑆 = 1. Note that the
effect of Billy throwing on Billy hitting when Suzy has not thrown—the first two terms in the
nodal-type’s subscript—does not matter since we have already assumed that Suzy does indeed
throw.

Finally, we need 𝜃𝐶 to take on a value such that 𝐻𝑆 has a positive effect on 𝐶 when 𝐻𝐵 = 0
(Billy doesn’t hit) since this is the actual circumstance on which we will be conditioning. This
is satisfied by any of the four nodal types of the form 𝜃𝐶

0𝑥1𝑥. This includes, for instance, a 𝜃𝐶

value in which Billy’s hitting has no effect on the bottle (perhaps Billy doesn’t throw hard
enough): e.g., 𝜃𝐶

0011. Here, Suzy’s throw is a counterfactual cause of the bottle’s cracking. And,
as we have said, all counterfactual causes are actual causes. They are, simply, counterfactual
causes when we hold nothing fixed (𝒲 in Condition 2 is just the empty set).

Notably, we do not need to specify the nodal type for 𝐵: Given the other nodal types identified,
Suzy’s throw will be the actual cause regardless of whether or not Billy throws. If Billy does
not throw, then Suzy’s throw is a simple counterfactual cause (given the other nodal types).

5Perhaps more surprising, it is possible that the expected causal effect is negative, but that 𝑋 is an actual
cause in expectation. For instance, suppose that 10% of the time Suzy’s shot intercepts Billy’s shot but
without hitting the bottle. In that case, the average causal effect of Suzy’s throw on bottle breaking is −0.1,
yet 90% of the time Suzy’s throw is an actual cause of bottle breaking (and 10% of the time it is an actual
cause of non-breaking). For related discussions, see Menzies (1989).

6We do not need an arrow in the other direction because Suzy throws first.
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The larger point is that actual cause queries can, like all other causal queries, be defined as
questions about the values of nodes in a causal model. When we pose the query, “Was Suzy’s
throw an actual cause of the bottle cracking?”, we are in effect asking whether the case’s
combination of nodal types (or its causal type) matches 𝜃𝑆

1 , 𝜃𝐵
𝑥 , 𝜃𝐻𝐵

𝑥𝑥00, 𝜃𝐻𝑆
01 , 𝜃𝐶

0𝑥1𝑥.

Likewise, if we want to ask how often Suzy’s throw is an actual cause, in a population of
throwing rounds, we can address this query as a question about the joint distribution of nodal
types. We are then asking how common the qualifying combinations of nodal types are in the
population given the distribution of types at each node.

S

B

HS

θHS

HB

θHB

C

θC

A DAG Capturing an Actual Cause

Figure 4.6: A causal model that allows preemption.

Actual causes are conceptually useful whenever there are two sufficient causes for an outcome,
but one preempts the operation of the other. For instance, we might posit that both the United
States’ development of the atomic bomb was a sufficient condition for US victory over Japan
in World War II, and that US conventional military superiority was also a sufficient condition
and would have operated via a land invasion of Japan. Neither condition was a counterfactual
cause of the outcome because both were present. However, holding constant the absence of
a land invasion, the atomic bomb was a difference-maker, rendering it an actual cause. The
concept of actual cause thus helps capture the sense in which the atomic bomb distinctively
contributed to the outcome, even if it was not a counterfactual cause.

An extended notion (Halpern 2016, p 81) of actual causes restricts the imagined counterfactual
deviations to states that are more likely to arise (more “normal”) than the factual state. We
will call this notion a “notable cause.” We can say that one cause, 𝐴, is “more notable” than
another cause, 𝐵, if a deviation in 𝐴 from its realized state is (believed to be) more likely than
a deviation in 𝐵 from its realized state.

For intuition, we might wonder why a Republican was elected to the presidency in a given
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election. In looking at some minimal winning coalition of states that voted Republican, we
might distinguish between a set of states that always vote Republican and a set of states that
usually go Democratic but voted Republican this time. If the coalition is minimal winning,
then every state that voted Republican is a cause of the outcome in the standard (difference-
making) sense. However, only the states that usually vote Democratic are notable causes since
it is only for them that the counterfactual scenario (voting Democratic) was more likely to
arise than the factual scenario. In a sense, we take the “red” states’ votes for the Republican
as given—placing them, as it were, in the causal background—and identify as “notable” those
conditions that mattered and easily could have gone differently. By the same token, we can
say that, among those states that voted Republican this time, those that more commonly vote
Democratic are more notable causes than those that less commonly vote Democratic.

How notable a counterfactual cause is can be expressed as a claim about the distribution of
a set of nodal types. For instance, if we observe 𝑅𝑗 = 1 for state 𝑗 (it voted Republican),
then the notability of this vote directly increases with our belief about the probability that
𝜃𝑅𝑗 = 𝜃𝑅𝑗

0 —that is, with the probability that the state’s vote could have gone the other way.
The higher the probability that a state could have voted Democratic, the more notable a cause
we consider its voting Republican.

4.6.2 General Procedure for Mapping Queries to Causal Types

In the next parts of this appendix, we describe a general method for mapping from queries to
causal types. In particular, we describe the algorithm used by the CausalQueries software
package to define queries and a walk-through of how to use CausalQueries to identify the
causal types associated with different queries.

The algorithm calculates the full set of outcomes on all nodes, given each possible causal
type and a collection of controlled conditions (“do operations”). Then each causal type is
marked as satisfying the query or not. This in turn then tells us the set of types that satisfy a
query. Quantitative queries, such as the probability of a query being satisfied, or the average
treatment effect, can then be calculated by taking the measure of the set of causal types that
satisfies the query.

First, some notation.

Let 𝑛 denote the number of nodes. Label the nodes 𝑉1, … 𝑉𝑛 subject to the requirement that
each node’s parents precede it in the ordering. Let 𝑝𝑎𝑗 denote the set of values of the parents
of node 𝑗 and let 𝑉𝑗(𝑝𝑎𝑗, 𝜃𝑡) denote the value of node 𝑗 given the values of its parents and the
causal type 𝜃𝑡.

The primitives of a query are questions about the values of outcomes, 𝑉 , given some set of
controlled operations 𝑥.
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• Let 𝑥 = (𝑥1, … 𝑥𝑛) denote a set of do operations where each 𝑥𝑖 takes on a value in
{−1, 0, 1}. here -1 indicates “not controlled”, 0 means set to 0 and 1 means set to 1 (this
set can be expanded if 𝑉 is not binary).

• Let 𝑉 (𝑥, 𝜃𝑡) denote the values 𝑉 (the full set of nodes) takes given 𝜃𝑡.
• A “simple query” is a function 𝑞(𝑉 (𝑥, 𝜃𝑡)) which returns TRUE if 𝑉 (𝑥, 𝜃𝑡) satisfies some

condition and FALSE otherwise.

Queries are summaries of simple queries. For instance, for nodes 𝑋 and 𝑌 :

• Query 𝑄1 ∶ 𝟙(𝑌 (𝑋 = 1) = 1)) asks whether 𝑌 = 1 when 𝑋 is set to 1. This requires
evaluating one simple query.

• Query 𝑄2 ∶ 𝟙(𝑌 (𝑋 = 1) = 1)&𝟙(𝑌 (𝑋 = 0) = 0)) is composed of two simple queries: The
first returns true if 𝑌 is 1 when 𝑋 is set to 1, the second returns true if 𝑌 is 0 when 𝑋
is set to 0; both conditions holding corresponds to a positive effect on a unit.

• Query 𝑄3 ∶ 𝐸((𝟙(𝑌 (𝑋 = 1) = 1)&(𝑌 (𝑋 = 0) = 0)) − (𝟙(𝑌 (𝑋 = 1) = 0)&𝟙(𝑌 (𝑋 = 0) =
1)) asks for the average treatment effect, represented here using four simple queries: the
expected difference between positive and negative effects. This query involves weighting
by the probability of the causal types.

Then, to calculate 𝑉 (𝑥, 𝜃𝑡):

1. Calculate 𝑣1, the realized value of the first node, 𝑉1, given 𝜃𝑡. This is given by 𝑣1 = 𝑥1
if 𝑥1 ≠ −1 and by 𝜃𝑉1

𝑡 otherwise.
2. For each 𝑗 ∈ 2...𝑛 calculate 𝑣𝑗 using either 𝑣𝑗 = 𝑥𝑗 if 𝑥𝑗 ≠ −1 and 𝑉𝑗(𝑝𝑎𝑗, 𝜃𝑡) otherwise,

where the values in 𝑝𝑎𝑗 are determined in the previous steps.

We now have the outcomes, 𝑉 , for all nodes given the operations 𝑥 and so can determine
𝑞(𝑉 (𝑥)). From there, we can calculate summaries of simple queries across causal types.

A last note on conditional queries. Say, we are interested in an attribution query of the form:
What is the probability that 𝑋 causes 𝑌 in a case in which 𝑋 = 1 and 𝑌 = 1. In this case,
define simple query 𝑞1 which assesses whether 𝑋 causes 𝑌 for a given 𝜃𝑡 and simple query 𝑞2
which assesses whether 𝑋 = 1 and 𝑌 = 1 under 𝜃𝑡. We then calculate the conditional query
by conditioning on the set of 𝜃s for which 𝑞2 is true and evaluating the share of these for which
𝑞2 is true (weighting by the probability of the causal types).

4.6.3 Identifying causal types for queries with CausalQueries

We first demonstrate how queries are calculated using the CausalQueries package for a chain
model of the form 𝑋 → 𝑀 → 𝑌 and then generalize.

Imagine first a chain model of this form in which we assume no negative effects of 𝑀 on 𝑋 or
𝑀 on 𝑌 . We will also suppose that in fact 𝑋 = 1, always. Doing this keeps the parameter
space a little smaller for this demonstration but also serves to demonstrate that a causal model
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can make use of the counterfactual possibility that a node takes on a particular value even if
it never does in fact.

We then ask two questions:

• Q1. What is the probability that 𝑋 has a positive effect on 𝑌 ? (“POS”)
• Q2. What is the probability that 𝑋 = 1 causes 𝑌 = 1 in cases in which 𝑋 = 1 and

𝑌 = 1? (“POC”)

To answer these two queries, we define a simple query 𝑞1 which assesses whether 𝑋 causes 𝑌
for each 𝜃 and a second simple query 𝑞2 which assesses whether 𝑋 = 1 and 𝑌 = 1 for each 𝜃.
In this example, the first simple query involves some do operations, the second does not.

Code tofor answering these two simple queries is shown below and the output is shown in
Table 4.1 (one row for each causal type).

model <- make_model("X -> M -> Y") |>
set_restrictions("X[]==0") |>
set_restrictions("M[X=1] < M[X=0]") |>
set_restrictions("Y[M=1] < Y[M=0]")

q1 <- "Y[X = 1] > Y[X = 0]"
q2 <- "X == 1 & Y == 1"

df <- data.frame(
a1 = get_query_types(model, q1)$types,
a2 = get_query_types(model, q2)$types,
p = CausalQueries:::get_type_prob(model))

The answer to the overall queries are then (1) the expected value of (the answers to) 𝑞1 given
weights 𝑝 and (2) the expected value of (the answers to) 𝑞1 given 𝑞0 and weights 𝑝. See the
next block of code for the implementation in CausalQueries and Table 4.2 for the results.

df |> summarize(
POS = weighted.mean(a1, p),
POC = weighted.mean(a1[a2], p[a2])
)

Given the equal weighting on causal types, these answers reflect the fact that for five of nine
causal types, we expect to see 𝑋 = 1 and 𝑌 = 1 but that the causal effect is present for only
one of nine causal types and for one of the five causal types that exhibit 𝑋 = 1 and 𝑌 = 1.

In practice, querying is done in one step. Like this for an unconditional query:
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Table 4.1: Set of causal types in the model that satisfy q1 and q2 along with the probability
of the type.

a1 a2 p
X1.M00.Y00 FALSE FALSE 0.111
X1.M01.Y00 FALSE FALSE 0.111
X1.M11.Y00 FALSE FALSE 0.111
X1.M00.Y01 FALSE FALSE 0.111
X1.M01.Y01 TRUE TRUE 0.111
X1.M11.Y01 FALSE TRUE 0.111
X1.M00.Y11 FALSE TRUE 0.111
X1.M01.Y11 FALSE TRUE 0.111
X1.M11.Y11 FALSE TRUE 0.111

Table 4.2: Calculated answers to two queries.

POS POC
0.111 0.2

# POS
query_model(model, query = "Y[X = 1] > Y[X = 0]")

And like this for a conditional query:

# POC
query_model(model, query = "Y[X = 1] > Y[X = 0]",

given = "X == 1 & Y == 1")

The same procedure can be used to identify any set of types that correspond to a particular
query. Table 4.3 illustrates the procedure, showing the syntax for model definition and queries
along with the syntax for identifying implied types using get_query_types.

All of these queries correspond to the probability of some set of types. We might call these
simple queries. Other complex queries (including the average treatment effect) can be thought
of as operations on the simple queries.

For instance:

• the average treatment effect, Y[X=1] - Y[X=0] is the difference between the simple
queries Y[X=1] > Y[X=0] and Y[X=1] < Y[X=0], or more simply the difference between
the queries Y[X=1]==1 and Y[X=0]==1
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Table 4.3: Examples of queries and corresponding causal types. The probability of the query
is the probability of the causal types that imply the theory.

Model Query Given Interpretation Types
X -> Y Y[X=1] > Y[X=0] Probability that X has

a positive effect on Y
X0.Y01, X1.Y01

X -> Y Y[X=1] < Y[X=0] X == 1 Probability that X has
a negative effect on Y
among those for whom
X=1

X1.Y10

X -> Y Y[X=1] > Y[X=0] X==1 & Y==1 Probability that Y=1
is due to X=1
(Attribution)

X1.Y01

X -> Y <- W Y[X=1] > Y[X=0] W == 1 Probability that X has
a positive effect on Y
for a case in which W
= 1 (where W is
possibly defined post
treatment)

W1.X0.Y0001,
W1.X1.Y0001,
W1.X0.Y1001,
W1.X1.Y1001,
W1.X0.Y0011,
W1.X1.Y0011,
W1.X0.Y1011,
W1.X1.Y1011

X -> Y <- W Y[X=1, W = 1] >
Y[X=0, W = 1]

W==0 Probability that X has
a positive effect on Y
if W were set to 1 for
cases for which in fact
W=0

W0.X0.Y0001,
W0.X1.Y0001,
W0.X0.Y1001,
W0.X1.Y1001,
W0.X0.Y0011,
W0.X1.Y0011,
W0.X0.Y1011,
W0.X1.Y1011

X -> Y <- W Y[X=1] > Y[X=0] Y[W=1] >
Y[W=0]

Probability that X has
a positive effect on Y
for a case in which W
has a positive effect on
Y

W0.X0.Y0110,
W1.X1.Y0001,
W1.X1.Y1001,
W0.X0.Y0111

X -> Y <- W (Y[X=1, W = 1] >
Y[X=0, W = 1]) >
(Y[X=1, W = 0] >
Y[X=0, W = 0])

W==1 &
X==1

Probability of a
positive interaction
between W and X for
Y; the probability that
the effect of X on Y is
stronger when W is
larger

W1.X1.Y0001,
W1.X1.Y1001,
W1.X1.Y1011

X -> M -> Y
<- X

Y[X = 1, M =
M[X=1]] > Y[X = 0,
M = M[X=1]]

X==1 &
M==1 &
Y==1

The probability X
would have a positive
effct on Y if M were
controlled to be at the
level it would take if X
were 1 for units for
which in fact M==1

X1.M01.Y0001,
X1.M11.Y0001,
X1.M01.Y1001,
X1.M11.Y1001,
X1.M01.Y0101,
X1.M11.Y0101,
X1.M01.Y1101,
X1.M11.Y1101

X -> M -> Y
<- X

(Y[M = 1] > Y[M =
0]) & (M[X = 1] >
M[X = 0])

Y[X=1] >
Y[X=0] &
M==1

The probability that X
causes M and M
causes Y among units
for which M = 1 and
X causes Y

X1.M01.Y0001,
X1.M01.Y0011
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Table 4.4: Coefficients on causal types for an interaction query

weight cases
-2 W1.X1.Y0110
-1 W1.X1.Y0100, W1.X1.Y0010, W1.X1.Y1110, W1.X1.Y0111
0 W1.X1.Y0000, W1.X1.Y1100, W1.X1.Y1010, W1.X1.Y0101,

W1.X1.Y0011, W1.X1.Y1111
1 W1.X1.Y1000, W1.X1.Y0001, W1.X1.Y1101, W1.X1.Y1011
2 W1.X1.Y1001

• the interaction query Q = (Y[X = 1, W = 1] - Y[X = 0, W = 1]) - (Y[X = 1, W =
0] - Y[X = 0, W = 0]) is similarly a combination of the simple queries (Y[X = 1, W
= 1] ==1, Y[X = 0, W = 1]==1, Y[X = 1, W = 0]==1, and Y[X = 0, W = 0]==1.

For linear complex queries like this, we can proceed by identifying a set of positive or negative
coefficients for each causal type that can be used to combine the probabilities of the types.

For instance, for the interaction query, Q, get_query_types(model, Q) would identify a set
of positive or negative coefficients for each causal type that range from -2 to 2, with a 2, for
instance corresponding to a type for which a change in 𝑊 changes the effect of 𝑋 from -1 to
1. See Table 4.4 for coefficients on types when 𝑋 = 1 and 𝑊 = 1.
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5 Bayesian Answers

Chapter summary

In this chapter, we outline the logic of Bayesian updating and show how it is used for
answering causal queries. We illustrate with applications to correlational and process
tracing analyses.

Bayesian methods are sets of procedures that allow us to figure out how to update beliefs in
light of new information.

We begin with a prior belief about the probability that a hypothesis is true. New data then
allow us to form a posterior belief about the probability of that hypothesis. Bayesian inference
takes into account three considerations: the consistency of the evidence with a hypothesis, the
uniqueness of the evidence to that hypothesis, and background knowledge that we have about
the hypothesis.

In the next section, we review the basic logic of Bayesian updating. The following section
applies that logic to the problem of updating on causal queries given a causal model and
data. The last section discusses principles of learning that follow from the use of Bayesian
updating.

5.1 Bayes Basics

For simple problems, Bayesian inference accords well with common intuitions about the inter-
pretation of evidence. Once problems get slightly more complex, however, our intuitions often
fail us.

5.1.1 Simple Instances

Suppose I draw a card from a deck. The chance that it is a Jack of Spades is just 1 in 52.
However, suppose that I first tell you that the card is indeed a spade and then ask you what
the chances are that it is a Jack of Spades. In this situation, you should guess 1 in 13. If I
said it was a face card and a spade, on the other hand, you should say 1 in 3. But if I told
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you that the card was a heart, you should respond that there is no chance that it is a Jack of
Spades.

All of these answers involve applications of Bayes’ rule in a simple setup. In each case, the
answer is derived by, first, assessing what is possible, given the available information, and
then assessing how likely the outcome of interest is among those states of the world that are
possible. We want to know the likelihood that a card is the Jack of Spades in light of the
evidence provided. We calculate this thus:1

Prob (Jack of Spades | Info) = Is Jack of Spades Consistent with Info? (0 or 1)
How many cards are consistent with Info?

The probability that a card is the Jack of Spades given the available information can be calcu-
lated as a function of whether or not a Jack of Spades is at all possible given the information
and, if so, of how many other types of cards would also be consistent with this evidence. The
probability of a Jack of Spades increases as the number of other cards consistent with the
available evidence falls.

Now consider two slightly trickier examples (neither original to us).

Interpreting Your Test Results. Say that you take a diagnostic test to see whether you
suffer from a disease that affects 1 in 100 people. The test is strong in the sense that, if you
have the disease, it will yield a positive result with a 99% probability; and if you do not have
the disease, then with a 99% probability, it will deliver a negative result. Now consider that
the test result comes out positive. What are the chances you have the disease? Intuitively, it
might seem that the answer is 99%—but that would be to mix up two different probabilities:
the probability of a positive result if you have the disease (that’s the 99%) with the probability
you have the disease given a positive result (the quantity we are interested in). In fact, the
probability you have the disease, given your positive result, is only 50%. You can think of that
as the share of people that have the disease among all those that test positive.

The logic is most easily seen if you think through it using frequencies (see Hoffrage and
Gigerenzer (1998) for this problem and ways to address it). If 10,000 people took the test,
then 100 of these would have the disease (1 in 100), and 99 of these would test positive. At
the same time, 9,900 people tested would not have the disease, yet 99 of these would also test
positive (the 1% error rate). So 198 people in total would test positive, but only half of them
are from the group that has the disease. The simple fact that the vast majority of people do
not have the disease means that, even if the false positive rate is low, a substantial share of
those testing positive are going to be people who do not have the disease.

As an equation this might be written:

1The vertical bar, |, in this equation should be read as “given that.” Thus, 𝑃𝑟(𝐴|𝐵) should be read as the
probability that 𝐴 is true or occurs given that 𝐵 is true or occurs.
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Probability Sick | Test = How many are sick and test positive?
How many test positive overall?

= 99
99 + 99

Two-Child Problem Consider, last, an old puzzle described in Gardner (1961). Mr Smith
has two children, 𝐴 and 𝐵. At least one of them is a boy. What are the chances they are both
boys? To be explicit about the puzzle, we will assume that the information that one child is a
boy is given as a truthful answer to the question, “Is at least one of the children a boy?”

Assuming that there is a 50% probability that a given child is a boy, people often assume the
answer is 50%. But surprisingly, the answer is 1 in 3. The reason is that the information
provided rules out only the possibility that both children are girls. So the right answer is
found by readjusting the probability that two children are boys based on this information. As
in the Jack of Spades example, we consider all possible states of the world, ask which ones are
possible given the available information, and then assess the probability of the outcome we
are interested in relative to the other still-possible states. Once we have learned that 𝐴 and
𝐵 are not both girls, that leaves three other possibilities: 𝐴 is a girl, 𝐵 is a boy; 𝐴 is a boy, 𝐵
is a girl; 𝐴 and 𝐵 are both boys. Since these are equally likely outcomes, the last of these has
a probability of 1 in 3. As an equation, we have:

Probability both boys | Not both girls = Probability both boys
Probability not both girls

= 1 in 4
3 in 4

5.1.2 Bayes’ Rule for Discrete Hypotheses

All of these examples make use of Bayes’ rule, a simple and powerful formula for deriving
updated beliefs from new data.

A simple version of the formula—really the definition of a conditional probability—is:

Pr(𝐻|𝑑) = Pr(𝐻, 𝑑)
Pr(𝑑) (5.1)

where 𝐻 represents a hypothesis, and 𝑑 represents a particular realization of new data (e.g., a
particular piece of evidence that we might observe).

The elaborated version, which we call Bayes’ rule, can be written:
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Pr(𝐻|𝑑) = Pr(𝑑|𝐻) Pr(𝐻)
Pr(𝑑) = Pr(𝑑|𝐻) Pr(𝐻)

∑𝐻′ Pr(𝑑|𝐻′) Pr(𝐻′)) (5.2)

where the summation runs over an exhaustive and exclusive set of hypotheses.

What this formula gives us is a way to calculate our posterior belief (Pr(𝐻|𝑑)): the degree of
confidence that we should have in the hypothesis after seeing the new data.

Inspecting the first line of the formula, we can see that our posterior belief derives from three
considerations.

First is the strength of our prior level of confidence in the hypothesis, Pr(𝐻). All else equal, a
hypothesis with a higher prior likelihood is going to end up having a higher posterior probability
as well. The reason is that, the more probable our hypothesis is at the outset, the greater the
chance that new data consistent with the hypothesis has in fact been generated by a state of
the world implied by the hypothesis. The more prevalent an illness, the more likely that a
positive test result has in fact come from an individual who has the illness.

Second is the likelihood Pr(𝑑|𝐻): How likely are we to have observed this particular pattern
in the data if the hypothesis were true? We can think of the likelihood as akin to the “true
positive” rate of a test. If a test for an illness has a true positive rate of 99%, this is the same
as saying that there is a 0.99 probability of observing a positive result if the hypothesis (the
person has the illness) is true.

Third is the unconditional probability of the data Pr(𝑑), which appears in the denominator.
This quantity asks: How likely are we to have observed this pattern of the data at all, regardless
of whether the hypothesis is true or false? If this data pattern is something we might expect
to see even if the hypothesis is not true, then seeing this data pattern will not weigh strongly
in favor of the hypothesis. If positive test results are quite common regardless of whether
someone has the illness, then a positive test result should not shift our beliefs much in favor
of thinking that the patient is ill.

One helpful way to think about these last two quantities is that they capture, respectively, how
consistent the data are with our hypothesis and how specific the data are to our hypothesis
(with specificity higher for lower values of Pr(𝑑)). We update more strongly in favor of our
hypothesis the more consistent the data that we observe are with the hypothesis; but that
updating is dampened the more consistent the data pattern is with alternative hypotheses.

As shown in the second part of Equation 5.2, Pr(𝑑) can be usefully written as a weighted
average over different ways (alternative hypotheses, 𝐻′) in which the data could have come
about. If we have three alternative hypotheses, for instance, we ask what the probability of the
data pattern is under each hypothesis and then average across those probabilities, weighting
each by the prior probability of its associated hypothesis.

Assessing Pr(𝑑) requires putting prior probabilities on an exclusive and exhaustive set of hy-
potheses. However, it does not require a listing of all possible hypotheses, just some exhaustive
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collection of hypotheses (i.e., a set whose probability adds up to 1). For example, in a murder
trial, we might need to assess the unconditional probability that the accused’s fingerprints
would be on the door. We can conceive of two mutually exclusive hypotheses that are collec-
tively exhaustive of the possibilities: The accused is guilty, or they are not guilty. We can
average across the probability of the accused’s fingerprints being on the door under each of
these two hypotheses, weighting by their prior probabilities. What we do not have to do is
decompose the “not guilty” hypothesis into a set of hypotheses about who else might be guilty.
As a procedure for assessing the probability of the evidence under the not-guilty hypothesis, it
might be helpful to think through who else might have done it, but there is no logical problem
with working with just the two hypotheses (guilty and not guilty) since they together capture
all possible states of the world. In Section 5.2.1.2, we work through an example in which we
can calculate the probability of data conditional on some effect not being present.

Also, while the hypotheses that enter the formula have to be mutually exclusive, that does
not prevent us from drawing downstream inferences about hypotheses that are not mutually
exclusive. For instance, we might use Bayes’ rule to form posteriors over which one of four
people is guilty: an elderly man, John; a young man, Billy; an older woman, Maria; or a
young woman, Kathy. These are mutually exclusive hypotheses. However, we can then use
the posterior on each of these hypotheses to update our beliefs about the probability that a
man is guilty and about the probability that an elderly person is guilty. Our beliefs about
whether the four individuals did it will have knock-on effects on our beliefs about whether
an individual with their characteristics did it. The fact that “man” and “elderly” are not
mutually exclusive in no way means that we cannot learn about both of these hypotheses from
an underlying Bayesian calculation, as long as the hypotheses to which we apply Bayes’ rule
are themselves mutually exclusive.

5.1.3 Continuous Parameters, Vector-valued parameters

The basic Bayesian formula extends in a simple way to continuous variables. For example,
suppose we are interested in the value of some variable, 𝛽. Rather than discrete hypotheses,
we are now considering a set of possible values that this continuous variable might take on.
So now our beliefs will take the form of a probability distribution over possible values of 𝛽:
essentially, beliefs about which values of 𝛽 are more (and how much more) likely than which
other values of 𝛽. We will generally refer to a variable that we are seeking to learn about from
the data as a “parameter.”

We start with a prior probability distribution over the parameter of interest, 𝛽. Then, once
we encounter new data, 𝑑, we calculate a posterior distribution over 𝛽 as:

𝑝(𝛽|𝑑) = 𝑝(𝑑|𝛽)𝑝(𝛽)
∫𝛽′ 𝑝(𝑑|𝛽′)𝑝(𝛽′)𝑑𝛽
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Here, the likelihood, 𝑝(𝑑|𝛽), is not a single probability but a function that maps each possible
value of 𝛽 to the probability of the observed data arising if that were the true value. The
likelihood will thus take on a higher value for those values of 𝛽 with which the data pattern
is more consistent. Note also that we are using integration rather than summation in the
denominator here because we are averaging across a continuous set of possible values of 𝛽,
rather than a discrete set of hypotheses.

We can then take a further step and consider learning about combinations of beliefs about the
world. Consider a vector 𝜃 that contains multiple parameters that we are uncertain about the
value of, say, the levels of popular support for five different candidates. We want to learn from
the data which combinations of parameter values—what level of support for candidate 1, for
candidate 2, and so on– are most likely the true values. Just as for a single parameter, we can
have a prior probability distribution over 𝜃, reflecting our beliefs before seeing the data about
which combinations of values are more or less likely. When we observe data (say, survey data
about the performance of the five candidates in an election), we can then update to a set of
posteriors beliefs over 𝜃 using:

𝑝(𝜃|𝑑) = 𝑝(𝑑|𝜃)𝑝(𝜃)
∫𝜃′ 𝑝(𝑑|𝜃′)𝑝(𝜃′)𝑑𝜃

This equation is identical to the prior one, except that we are now forming and updating
beliefs about the vector-valued parameter, 𝜃. The likelihood now has to tell us the probability
of different possible distributions of support that we could observe in the survey under different
possible true levels of support for these candidates. Suppose, for instance, that we observe
levels of support in the survey of 𝑑 = (12%, 8%, 20%, 40%, 20%). The likelihood function might
tell us that this is a distribution that we are highly likely to observe if the true distribution is, for
instance 𝜃 = (10%, 10%, 10%, 50%, 20%) but very unlikely to observe if the true distribution
is, for instance, 𝜃 = (30%, 30%, 10%, 5%, 25%). More generally, the likelihood function will
generate a likelihood of the observed survey data for all possible combinations of values in the
𝜃 vector. Our posterior beliefs will then shift from our prior toward that combination of values
in 𝜃 under which the data that we have observed have the highest likelihood.

5.1.4 The Dirichlet Family

Bayes’ rule requires the ability to express a prior distribution over possible states of the world.
It does not require that the prior have any particular properties other than being a probability
distribution. In practice, however, when dealing with continuous parameters, it can be helpful
to use “off the shelf” distributions.

For the framework developed in this book, we will often be interested in forming beliefs and
learning about the share of units that are of a particular type, such as the shares of units
for which the nodal type for 𝑌 is 𝜃𝑌

01, 𝜃𝑌
10, 𝜃𝑌

00, or 𝜃𝑌
11. Formally, this kind of problem is quite

similar to the example that we just discussed in which public support is distributed across a
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set of candidates, with each candidate having some underlying share of support. A distinctive
feature of beliefs about shares is that they are constrained in a specific way: Whatever our
belief about the shares of support held by different candidates might be, those shares must
always add up to 1.

For this type of problem, we will make heavy use of “Dirichlet” distributions. The Dirichlet
is a family of distributions that capture beliefs about shares, taking into account the logical
constraint that shares must always sum to 1. We can use a Dirichlet distribution to express
our best guess about the proportions of each type in a population, or the “expected” shares.
We can also use a Dirichlet to express our uncertainty about those proportions.

To think about how uncertainty and learning from data operate with Dirichlet distributions,
it is helpful to conceptualize a very simple question about shares. Suppose that members of a
population fall within one of two groups, so we are trying to estimate just a single proportion:
for example, the share of people in a population that voted (which also, of course, implies the
share that did not). Our beliefs about this proportion can differ (or change) in two basic ways.
For one thing, two people’s “best guesses” about this quantity (their expected value) could
differ. One person might believe, for instance, that the turnout rate was most likely 0.3 while
a second person might believe it was most likely 0.5.

At the same time, levels of uncertainty can also differ. Imagine that two people have the same
“best guess” about the share who voted, both believing that the turnout rate was most likely
around 0.5. However, they differ in how certain they are about this claim. One individual
might have no information about the question and thus believe that any turnout rate between
0 and 1 is equally likely: This implies an expected turnout rate of 0.5. The other person, in
contrast, might have a great deal of information and thus be very confident that the number
is 0.5.

For questions about how a population is divided into two groups—say, one in which an outcome
occurs, and another in which the outcome does not occur—we can capture both the expected
value of beliefs and their uncertainty by using a special case of the Dirichlet distribution known
as the Beta distribution. Any such question is in fact, a question about a single proportion—
the proportion in one of the groups (since the proportion in which the outcome did not occur
is just one minus the proportion in which it did). The Beta is a distribution over the [0, 1]
interval, the interval over which a single proportion can range. A given Beta distribution can
be described by two parameters, known as 𝛼 and 𝛽. In the case where both 𝛼 and 𝛽 are
equal to 1, the distribution is uniform: All values for the proportion are considered equally
likely. As 𝛼 rises, large values for the proportion are seen as more likely; as 𝛽 rises, lower
outcomes are considered more likely. If both parameters rise proportionately, then our “best
guess” about the proportion does not change, but the distribution becomes tighter, reflecting
lower uncertainty.

An attractive feature of the Beta distribution is that Bayesian learning from new data can
be easily described. Suppose one starts with a prior distribution Beta(𝛼, 𝛽) over the share of
cases with some outcome (e.g., the proportion of people who votes), and then one observes
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a positive case—an individual who voted. The Bayesian posterior distribution is now a Beta
with parameters 𝛼 + 1, 𝛽: the first parameter relating to positive cases literally just goes up
by 1. More generally, if we observe 𝑛1 new positive cases and 𝑛0 new negative cases, our
updated beliefs will have parameters 𝛼 + 𝑛1, 𝛽 + 𝑛0. So if we start with uniform priors about
population shares, and build up knowledge as we see outcomes, our posterior beliefs should be
Beta distributions with updated parameters.

Figure 5.1 shows a set of Beta distributions described by different 𝛼 and 𝛽 values. In the
top left, we start with a distribution that has even greater variance than the uniform, with
alpha and beta both set to 0.5 (corresponding to the non-informative “Jeffrey’s prior”). In
each row, we keep 𝛼 constant, reflecting observation of the same number of positive cases, but
increase 𝛽 reflecting the kind of updating that would occur as we observe new negative cases.
As we can see, the distribution tightens around 0 as 𝛽 increases, reflecting both a reduction in
our “best guess” of the proportion positive and mounting certainty about that low proportion.
As we go down a column, we hold 𝛽 constant but increase 𝛼, reflecting the observation of
more positive cases; we see a rightward shift in the center of gravity of each distribution and
increasing certainty about that higher proportion.

Note that we can think of proportions as probabilities, and we will often write somewhat
interchangeably about the two concepts in this book. To say that the proportion of units in a
population with a positive outcome is 0.3 is the same as saying that there is a 0.3 probability
that a unit randomly drawn from the population will have a positive outcome. Likewise, to
say that a coin lands on heads with 0.5 probability is the same as saying that we expect that
0.5 of all coin tosses will be heads.

The general form of the Dirichlet distribution covers situations in which there are beliefs not
just over a single proportion or probability, but over collections of proportions or probabilities.
For example, if four outcomes are possible and their shares in the population are 𝜃1, 𝜃2, 𝜃3, and
𝜃4, then beliefs about these shares are distributions over all four-element vectors of numbers
that add up to 1 (also known as a three-dimensional unit simplex).

The Dirichlet distribution always has as many parameters as there are outcomes, and these are
traditionally recorded in a vector denoted 𝛼. Similar to the Beta distribution, an uninformative
prior (Jeffrey’s prior) has 𝛼 parameters of (.5, .5, .5, … ) and a uniform (“flat”) distribution has
𝛼 = (1, 1, 1, , … ). As with the Beta distribution, all Dirichlets update in a simple way. If we
have a Dirichlet prior over three types with parameter 𝛼 = (𝛼1, 𝛼2, 𝛼3) and we observe an
outcome of type 1, for example, then the posterior distribution is also Dirichlet but now with
parameter vector 𝛼′ = (𝛼1 + 1, 𝛼2, 𝛼3).

5.1.5 Moments: Mean and Variance

In what follows, we often refer to the “posterior mean” or the “posterior variance.” These are
simply summary statistics of the posterior distribution, or moments, and can be calculated
easily once the posterior distribution is known (or approximated, see below) given data 𝑑.
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Figure 5.1: Beta distributions
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The posterior mean, for instance for 𝜃1—a component of 𝜃—is ∫ 𝜃1𝑝(𝜃|𝑑)𝑑𝜃. Similarly, the
posterior variance is ∫(𝜃1 − (𝜃1|𝑑))2𝑝(𝜃|𝑑)𝑑𝜃. In the same way we we can imagine a query that
is a function of multiple parameters, for instance 𝑞(𝜃) = 𝜃3 − 𝜃2 and calculate the expected
value of 𝑞 using ̂𝑞(𝑑) = ∫ 𝑞(𝜃)𝑝(𝜃|𝑑)𝑑𝜃 and the variance as 𝑉 (𝑞|𝑑) = ∫(𝑞(𝜃) − ̂𝑞(𝑑))2𝑝(𝜃|𝑑)𝑑𝜃.

Note that we calculate these quantities using the posterior distribution over the full parameter
vector, 𝜃. To put the point more intuitively, the most likely value of 𝜃1 will depend on which
values of other parameters are most common and on which values of 𝜃1 are most likely in
combination with the most common values of those other parameters. This is a point that
particularly matters when the parameters of interest are dependent on each other in some way:
For instance, if we are interested both in voter turnout and in the share of the vote that goes
to a Democrat, and we think that these two phenomena are correlated with each other.

5.1.6 Learning

Bayesian updating is all about learning. We can see right away from Equation 5.2 whether we
learned anything from data 𝑑. The simplest notion of learning is that our beliefs after seeing
𝑑 are different than they were before we saw 𝑑. That is Pr(𝐻|𝑑) ≠ Pr(𝐻). Or using Equation
Equation 5.2, we have learned something if:

Pr(𝑑|𝐻) Pr(𝐻)
∑𝐻′ Pr(𝑑|𝐻′) Pr(𝐻′)) ≠ Pr(𝐻) (5.3)

So long as Pr(𝐻) ∈ (0, 1), this can be written as:

Pr(𝑑|𝐻) ≠ ∑
𝐻′≠𝐻

Pr(𝐻′)
(1 − Pr(𝐻)) Pr(𝑑|𝐻′) (5.4)

which simply means that the probability of 𝑑 under the hypothesis is not the same as the
probability of 𝑑 averaged across all other hypotheses.

Two notions are useful for describing how much one can learn or is likely to learn from data:
the probative value of data and the expected learning from data. We describe both here and
pick up both ideas in later sections.2

To consider the simplest scenario, suppose there are two mutually exclusive and exhaustive
hypotheses, 𝐻0 and 𝐻1 and that we place a prior probability of 𝑝 on 𝐻1. Imagine that the
available evidence can take on two values, 𝐾 = 0 or 𝐾 = 1. Likelihoods are described by

2In a footnote in Humphreys and Jacobs (2015) we describe a notion of probative value that made use of
expected learning. We think, however, it is better to keep these notions separate to avoid confusion and
so adopt the definition used by Kaye (1986) and Fairfield and Charman (2017). As a practical matter,
however that work used the same concept of expected learning as presented here and varied probative value
by varying the 𝜙 quantities directly.
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𝜙0 and 𝜙1, where 𝜙0 denotes the probability 𝐾 = 1 under 𝐻0 and 𝜙1 denotes the probability
𝐾 = 1 under 𝐻1. Equation 5.2 then becomes:

Pr(𝐻1|𝐾 = 1) = 𝜙1𝑝
𝜙1𝑝 + 𝜙0(1 − 𝑝) (5.5)

and the condition for learning (Equation 5.4) reduces to 𝜙1 ≠ 𝜙0, so long as 𝑝 ∈ (0, 1).
More generally, the informativeness of evidence depends on how different 𝜙1 and 𝜙0 are from
each other: how different the likelihood of seeing that evidence is under the two hypotheses.
How best to measure that difference? There are many possibilities (see Kaye (1986) for a
review), but a compelling approach is to use the log of the ratio of the likelihoods. This is
a simple and elegant measure that corresponds to what Isidore Jacob Good (1950) proposes
in multiple contributions, a measure of the “weight of evidence.” Kaye (1986) refers to this
as the most common measure of “probative value.” Fairfield and Charman (2017) also use
this measure, highlighting how it provides a useful way of characterizing the impact of, and of
analyzing, evidence.

Definition 5.1. Probative value

Suppose that, if a hypothesis 𝐻 is true, a clue 𝐾 is observed with probability 𝜙1 (and otherwise
is not observed). The probability that the clue is observed if the hypothesis is not true is
denoted as 𝜙0. Let 𝑝 refer to the prior that the hypothesis is true.

Then the “probative value” of an observed clue 𝐾 is:

Probative value ∶= log (𝜙1
𝜙0

)

Some features of this measure of probative value are worth noting.

First, perhaps not immediately obvious, this notion of probative value should be thought of
with respect to the realized value of the clue, not the possible data that might have been found.
That is, it is about the data you have, not the data you might have. Thus, a clue (if found to be
present) might have weak probative value if the clue is found, but strong probative value if it is
not found. To illustrate, say 𝜙1 = Pr(𝐾 = 1|𝐻1) = 0.999 and 𝜙0 = Pr(𝐾 = 1|𝐻 = 0) = 0.333.
The probative value of the found clue is log(.999/.333) = 0.47—a piece of evidence “barely
worth mentioning” according to Jeffreys (1998). Our beliefs will shift only a little toward 𝐻1 if
the clue is found. The non-appearance of the same clue, however, has strong probative value
for 𝐻0. In this case, probative value is log (Pr(𝐾=0|𝐻0)

Pr(𝐾=0|𝐻1)) = log (1−𝜙0
1−𝜙1

) = log(.667/.001) = 2.82
—“decisive” according to Jeffreys (1998).

An important implication here is that knowledge of the probative value of a clue, thus defined,
is not necessarily a good guide to the selection of a clue to search for. When deciding on
which evidence to go looking for, we do not know what we will find. Thus, knowing that the
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probative value of a clue is strong if we happen to find it—but that the clue’s absence would
be minimally informative—does not tell us whether it is worth expending resources looking
for that clue.

Second, this measure of probative value makes no use of our priors on the hypotheses. In
fact, Irving John Good (1984)’s first desideratum of a measure of the weight of evidence is
that it should be a function of 𝜙0 and 𝜙1 only. Kaye and Koehler (2003) also provide multiple
arguments for the exclusion of information on priors from determinations of probative value.
Yet, ignoring our prior confidence in the hypotheses when selecting clues to search for leaves
us unable to tell whether we are setting ourselves up for a finding that is “decisive” or one
that is “barely worth mentioning.” If 𝐾 = 1 constitutes strong evidence in favor of 𝐻1 while
𝐾 = 0 is weak evidence in favor of 𝐻0, it may not be worth looking for the clue if we are
highly confident ex ante that 𝐻0 is right—since, under those beliefs, we are very unlikely to
find 𝐾 = 1, the evidence with high probative value.

Anticipating discussions in later chapters (especially Chapter 6 and the chapters in Part 3 of
the book), we can think of a data strategy as a strategy that produces a probability distribution
over the types of data that we might encounter. For instance, our data strategy might be to
look for a particular clue 𝐾: So we then expect to find 𝐾 = 1 with some probability and
clue 𝐾 = 0 with some probability. Our strategy might also be much more complex, involving
random sampling of cases and a search for data in later stages conditional on what we find in
earlier stages. Either way, our beliefs about what we are likely to find—and thus the value of
a given data strategy—are shaped by our prior beliefs about the world.

In later analyses in this book, particularly when we turn to assessing research strategies, we
use a measure of learning that takes prior confidence in the hypotheses fully into account:
the expected reduction in uncertainty arising from a strategy. We can think of the expected
reduction in uncertainty associated with a research strategy as the difference between the
variance in our prior distribution on a query and the expected posterior variance on that
query under the strategy. We can also (almost equivalently) conceptualize our uncertainty
as “loss,” or the (squared) errors arising from a strategy.3 So then the expected gain from a
research strategy can be thought of as the reduction in loss, or squared errors, that we expect
to reap when we see new data (relative to the errors we make without the new data).

How can we assess expected reductions in loss under a research strategy? For any data strategy,
𝐷, we can imagine having seen different data patterns (𝑑) that are possible under the strategy.
We can then assess our beliefs about the errors we will likely make if we see and draw inferences
from those possible data patterns. Finally, we can ask, prospectively, what errors we expect to
make given our prior beliefs about the world and the kinds of data patterns that those beliefs
imply we are most likely to observe.

Expected loss (equivalently, expected squared error or expected posterior variance) for query
𝑞 and data strategy 𝐷 can then be written:4

3We discuss the relationship between expected error and expected posterior variance more fully in Chapter 6.
4This quantity is given in Humphreys and Jacobs (2015) (Equation 4). The idea behind this expression is that
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ℒ(𝑞, 𝐷) = 𝔼𝜃(𝔼𝑑|𝜃,𝐷(𝑞(𝜃) − ̂𝑞(𝑑))2)

Where ̂𝑞(𝑑) is the expected value of the query after observing data 𝑑. To describe the reduction
in loss that flows from strategy 𝐷, we need to calculate the loss metric a second time, this
time using the prior distribution. Since our loss is defined as expected squared errors, this is
simply the prior variance. We can then define the expected learning from a data strategy as
follows (Definition 5.2).

Definition 5.2. Let 𝑉 (𝑞) > 0 denote prior variance on query 𝑞 and ℒ(𝑞, 𝐷) the expected
error on 𝑞 from implementation of data strategy 𝐷. Then:

Expected learning(𝑞, 𝐷) ∶= 1 − ℒ(𝑞, 𝐷)
𝑉 (𝑞)

Note that expected learning ranges between 0 and 1. It is 1 when ℒ(𝑞, 𝐷) = 0—when we expect
to end up with no uncertainty about the query after implementing the data strategy. And
expected learning is 0 when ℒ(𝑞, 𝐷) = 𝑉 (𝑞)—when we expect no reduction in uncertainty.

Returning to our running illustration, suppose that if a hypothesis 𝐻1 is true, then 𝐾 = 1 is
observed with probability 𝜙1 (and otherwise is not observed). If 𝐻0 is true, then the clue is
observed with probability 𝜙0. Let 𝑝 denote the prior probability that 𝐻1 is true. Then, the
prior uncertainty is 𝑉 (𝐻1) = 𝑝(1 − 𝑝). The expected loss under the data strategy of looking
for 𝐾 is calculated by assessing (squared) errors in four situations—defined by whether 𝐻1 or
𝐻0 is true, and by whether or not we observe 𝐾 = 1 when we go looking for it. We can use
our priors and 𝜙 likelihoods to put a probability on each of these four situations, giving the

to assess loss, we need to specify our query 𝑞, which is itself a function of a set of underlying parameters, 𝜃,
that characterize the world. Suppose that 𝜃 correctly characterizes the world so that the true value of the
query is 𝑞(𝜃). Then, the beliefs about the world in 𝜃 imply a probability distribution over the type of data
we might see under a given data strategy. For any particular data realization 𝑑 that we could potentially
observe, we can derive an estimate of our query, ̂𝑞(𝑑). We can then calculate the inaccuracy of that estimate
relative to the truth, 𝑞(𝜃). We operationalize that inaccuracy, or loss, as a squared deviation, though any
other metric could also be employed. We then calculate the expected loss over the different values of 𝜃 that
we entertain—say, given a prior probability distribution over 𝜃.
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expected loss as:

ℒ = 𝑝𝜙1 (1 − 𝜙1𝑝
𝜙1𝑝 + 𝜙0(1 − 𝑝))

2
+ (5.6)

𝑝(1 − 𝜙1) (1 − (1 − 𝜙1)𝑝
(1 − 𝜙1)𝑝 + (1 − 𝜙0)(1 − 𝑝))

2
+ (5.7)

(1 − 𝑝)𝜙0 (0 − 𝜙1𝑝
𝜙1𝑝 + 𝜙0(1 − 𝑝))

2
+ (5.8)

(1 − 𝑝)(1 − 𝜙0) (0 − (1 − 𝜙1)𝑝
(1 − 𝜙1)𝑝 + (1 − 𝜙0)(1 − 𝑝))

2
(5.9)

Putting these together (and simplifying), expected learning would then be:

Expected learning = (𝜙1 − 𝜙0)2𝑝(1 − 𝑝)
𝜙0(1 − 𝜙0) − (𝜙1 − 𝜙0)2𝑝2 − (𝜙1 − 𝜙0)𝑝(2𝜙0 − 1)

This expression takes still simpler forms in special situations. For instance, in the situation in
which 𝑝 = 0.5 we have:

Expected learning = (𝜙1 − 𝜙0)2

2(𝜙1 + 𝜙0) − (𝜙1 + 𝜙0)2

Notably, this expression has some commonalities with probative value. Expected learning—
like probative value—is clearly 0 when 𝜙1 = 𝜙0—that is, when a clue is just as likely under
an alternative hypothesis as under a given hypothesis (as we saw above already). In addition,
expected learning is bounded by 0 and 1, and is largest when the probative value is greatest—
when 𝜙1 = 1 and 𝜙0 = 0 (or vice versa).

But there nevertheless are disagreements. Compare, for instance, two clues we could go looking
for, 𝐾1 and 𝐾2. For 𝐾1, suppose that we have (𝜙1 = 0.99, 𝜙0 = 0.01), while for 𝐾2, we have
(𝜙1 = 0.099, 𝜙0 = 0.001). The probative value measure does not distinguish between these two
clues: The probative value of finding the two clues is the same. However, with 𝑝 = 0.5, the
expected learning from searching for the two clues is very different: Expected learning from a
search for 𝐾1 is very large (an expected 95% reduction in variance), but expected learning for
𝐾2 is small (5% reduction). This is because we do not expect to observe 𝐾2 when we look for
it, and we learn little if it is sought but not found.

We can also have clues for which the expected learning is the same but the probative value of
a clue found differs greatly: For instance, still with 𝑝 = 0.5, if we have 𝐾3 with(𝜙1 = 0.9, 𝜙0 =
0.5) and 𝐾4 with (𝜙1 = 0.5, 𝜙0 = 0.1)).
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A nice feature of the expected learning measure is that the concept generalizes easily to more
complex research situations—for instance, to situations in which the decision to search for
one clue depends on what we find when we search for a prior clue. Moreover, variants of the
measure can be produced for different loss functions that reflect researcher desiderata when
embarking on a research project.

5.1.7 Bayes Estimation in Practice

Although the principle of Bayesian inference is quite simple, in practice generating posteriors
for continuous parameters is computationally complex. With continuous parameters, there is
an infinity of possible parameter values, and there will rarely be an analytic solution—a way
of calculating the posterior distribution. Instead, researchers use some form of sampling from
the parameter “space” to generate an approximation of the posterior distribution.

Imagine, for instance, that you were interested in forming a posterior belief about the share
of U.S. voters intending to vote Democrat, given polling data. (This is not truly continuous,
but it might as well be with large elections.)

One approach would be to coarsen the parameter space: We could calculate the probability of
observing the polling data given a discrete set of possible values, for example, 𝜃 = 0, 𝜃 = 0.1, 𝜃 =
0.2, … , 𝜃 = 1. We could then apply Bayes’ rule to calculate a posterior probability for each of
these possible true values. The downside of this approach, however, is that, for a decent level
of precision, it becomes computationally expensive to carry out with large parameter spaces—
and parameter spaces get large quickly. For instance, if we are interested in vote shares, we
might find 0.4, 0.5, and 0.6 too coarse and want posteriors for 0.51 or even 0.505. The latter
would require a separate Bayesian calculation for each of 200 parameter values. And if we had
two parameters that we wanted to slice up each into 200 possible values, we would then have
40,000 parameter pairs to worry about. What’s more, most of those calculations would not
be very informative if the plausible values lie within some small (though possibly unknown)
range—such as between 0.4 and 0.6.

An alternative approach is to use variants of Markov Chain Monte Carlo (MCMC) sampling.
Under MCMC approaches, parameter vectors—possible combinations of values for the pa-
rameters of interest—are sampled, and their likelihood is evaluated. If a sampled parameter
vector is found to have a high likelihood, then new parameter vectors near it are drawn with a
high probability in the next round. Based on the likelihood associated with these new draws,
additional draws are then made in turn. We are thus sampling more from the parts of the
posterior distribution that are closer to the most probable values of the parameters of interest,
and the result is a chain of draws that build up to approximate the posterior distribution. The
output from these procedures is not a set of probabilities for every possible parameter vector
but rather a set of draws of parameter vectors from the underlying (but not directly observed)
posterior distribution.
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Many algorithms have been developed to achieve these tasks efficiently. In all of our appli-
cations using the CausalQueries software package, we rely on the stan procedures, which
use MCMC methods: specifically, the Hamiltonian Monte Carlo algorithm and the no-U-turn
sampler. Details on these approaches are given in the Stan Reference Manual (Stan et al.
2020).

5.2 Bayes Applied

5.2.1 Simple Bayesian Process Tracing

Process tracing, in its most basic form, seeks to use within-case evidence to draw inferences
about a case. We first outline the logic of Bayesian process tracing without explicit reference
to a causal model, and then introduce how Bayesian process tracing can be underpinned by a
causal model.

To begin without a model: Suppose we want to know whether 𝑋 caused 𝑌 in a case, and
we use data on a within-case “clue,” 𝐾, to make an inference about that question. We refer
to the within-case evidence gathered during process tracing as clues in order to underline
their probabilistic relationship to the causal relationship of interest. Readers familiar with the
framework in Collier, Brady, and Seawright (2004) can usefully think of “clues” as akin to
causal process observations, although we highlight that there is no requirement that the clues
be generated by the causal process connecting 𝑋 to 𝑌 .

As we will show, we can think of our question — did 𝑋 taking on the value it did in this case
cause 𝑌 to take on the value it did — as a question about the case’s nodal type for 𝑌 . So, to
make inferences, the analyst looks for clues that will be observed with some probability if the
case is of a given type and that will not be observed with some probability if the case is not
of that type.

It is relatively straightforward to express the logic of process tracing in Bayesian terms. As
noted by others (e.g., Bennett (2008), Beach and Pedersen (2013), I. Rohlfing (2012)), there is
an evident connection between the use of evidence in process tracing and Bayesian inference.
See Fairfield and Charman (2017) for a detailed treatment of a Bayesian approach to qualitative
research. As we have shown elsewhere, translating process tracing into Bayesian terms can also
aid the integration of qualitative with quantitative causal inferences (Humphreys and Jacobs
(2015)).

To illustrate, suppose we are interested in economic crisis as a possible cause of regime collapse.
We already have 𝑋, 𝑌 data on one authoritarian regime: We know that it suffered an economic
crisis (𝑋 = 1) and collapsed (𝑌 = 1). We want to know what caused the collapse: Was it the
economic crisis or something else? To make progress, we will try to draw inferences given a
“clue.” Beliefs about the probabilities of observing clues for cases with different causal effects
derive from theories of, or evidence about, the causal process connecting 𝑋 and 𝑌 . Suppose
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we theorize that the mechanism through which economic crisis generates collapse runs via
diminished regime capacity to reward its supporters during an economic downturn. A possible
clue to the operation of a causal effect, then, might be the observation of diminishing rents
flowing to regime supporters shortly after the crisis. If we believe the theory – and using
the 𝑎, 𝑏, 𝑐, 𝑑 notation for types from Chapter 2 – then this is a clue that we might believe to
be highly probable for cases of type 𝑏 that have experienced economic crisis (those for which
the crisis in fact caused the collapse) but of low probability for cases of type 𝑑 that have
experienced crisis (those for which the collapse occurred for other reasons).

To make use of Bayes’ rule we need to:

1. define our parameters
2. provide prior beliefs about the parameters
3. define a likelihood function—indicating the probability of observing different data pat-

terns given stipulated parameters
4. provide the “probability of the data”—this can be calculated from 2. and 3.
5. plug these into Bayes’ rule to calculate a posterior on the parameters

We can then calculate the posterior on any quantity of interest that can be formed by combining
or transforming these parameters.

We discuss each of these steps in turn. We start with the simplest situation where we want to
assess whether 𝑋 caused 𝑌 .

Parameters. The inferential challenge is to determine whether the regime collapsed because
of the crisis (it is a 𝑏 type) or whether it would have collapsed even without it (𝑑 type). We
do so using further information from the case—one or more clues.

Let 𝜃 ∈ {𝑎, 𝑏, 𝑐, 𝑑} refer to the type of an individual case. In this initial setup, our hypothesis
consists simply of a belief about 𝜃 for the case under examination: Specifically, whether the
case is a 𝑏 type (𝜃 = 𝑏). The parameter of interest is the causal type, 𝜃.

We first assume that we know the likelihood and then walk through deriving the likelihood
from a causal model.

5.2.1.1 Known Priors and Known Likelihood

We imagine first that the priors and the likelihood can simply be supplied by the researcher.

Prior. We let 𝑝 denote a prior degree of confidence assigned to the hypothesis (𝑝 = 𝑃𝑟(𝐻)).
This is, here, our prior belief that an authoritarian regime that has experienced an economic
crisis is a 𝑏.

Likelihood. We use the variable 𝐾 to register the outcome of the search for a clue, with 𝐾1
indicating that a specific clue is searched for and found, and 𝐾0 indicating that the clue is
searched for and not found. The likelihood, Pr(𝐾 = 1|𝐻) is the probability of observing the
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clue, when we look for it in our case, if the hypothesis is true—that is, here, if the case is a
𝑏 type. The key feature of a clue is that the probability of observing the clue is believed to
depend on the case’s causal type. In order to calculate the probability of the data, we will in
fact, need two such probabilities: We let 𝜙𝑏 denote the probability of observing the clue for
a case of 𝑏 type (Pr(𝐾 = 1|𝜃 = 𝑏)), and 𝜙𝑑 the probability of observing the clue for a case
of 𝑑 type (Pr(𝐾 = 1|𝜃 = 𝑑)). The key idea in many accounts of process tracing is that the
differences between these probabilities provide clues with probative value, that is, the ability
to generate learning about causal types. The likelihood, Pr(𝐾 = 1|𝐻), is simply 𝜙𝑏.

Probability of the data. This is the probability of observing the clue when we look for it
in a case, regardless of its type, (Pr(𝐾 = 1)). More specifically, it is the probability of the
clue in an 𝑋 = 1 case with a positive outcome 𝑌 = 1. As such a case can only be a 𝑏 or a 𝑑
type, this probability can be calculated simply from 𝜙𝑏 and 𝜙𝑑, together with our prior beliefs
about how likely an 𝑋 = 1, 𝑌 = 1 case is to be a 𝑏 or a 𝑑 type.

This probability aligns (inversely) with Van Evera’s (1994) concept of “uniqueness.”

Inference. We can now apply Bayes’ rule to describe the learning that results from process
tracing. If we observe the clue when we look for it in the case, then our posterior belief in the
hypothesis that the case is of type b is:

Pr(𝜃 = 𝑏|𝐾 = 1, 𝑋 = 𝑌 = 1) = 𝜙𝑏𝑝
𝜙𝑏𝑝 + 𝜙𝑑(1 − 𝑝)

In this exposition, we did not use a causal model in a meaningful way—we simply needed the
priors and the clue probabilities.

5.2.1.2 Process Tracing with a Model: Derived Priors, Derived Likelihood

A central claim of this book is that the priors and likelihoods that we use in Bayesian process
tracing do not need to be treated as primitives or raw inputs into our analysis: They can
themselves be justified by an underlying—“lower level”— causal model. When we ground
process tracing in a causal model, we can transparently derive our priors and the likelihoods
of the evidence from a set of explicitly stated substantive beliefs about how the world works.
As we elaborate below, grounding process tracing in a model also helpfully imposes a kind of
logical consistency on our priors and likelihoods as they all emerge from the same underlying
belief set.

We elaborate this point in much greater detail later, but we illustrate at a high level how
Bayesian updating from a causal model works. Imagine a world in which an 𝑋, 𝑌 relationship
is completely mediated by 𝐾: So we have the structural causal model 𝑋 → 𝐾 → 𝑌 . Moreover,
suppose, from prior observations of the conditional distribution of outcomes given their causes,
we mobilize background knowledge that:
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• Pr(𝐾 = 1|𝑋 = 0) = 0, Pr(𝐾 = 1|𝑋 = 1) = 0.5
• Pr(𝑌 = 1|𝐾 = 0) = 0.5, Pr(𝑌 = 1|𝐾 = 1) = 1

This background knowledge is consistent with a world in which units are equally split between
𝑏 and 𝑐 types in the first step (which we will write as 𝑏𝐾, 𝑐𝐾), and units are equally split
between 𝑏 and 𝑑 types in the second step (𝑏𝑌 , 𝑑𝑌 ). To see this, note that these probabilities
are inconsistent with adverse effects at each stage. The differences in means then correspond
to the share of types with positive effects.

We can calculate the types for the 𝑋 causes 𝑌 relationship (𝜃) by combining types for each
step. For instance, if a unit is a (𝑏𝐾, 𝑏𝑌 ) then it has type 𝜃 = 𝑏 overall. If it is 𝑑𝑌 in the final
step, then it is a 𝑑 overall and so on.

Assume that the case at hand is sampled from this world.

Then, we can calculate that the prior probability, 𝑝, that 𝑋 caused 𝑌 given 𝑋 = 𝑌 = 1 is
𝑝 = 1

3 . Given 𝑋 = 1, the observation of 𝑌 = 1 is consistent with 𝑏 types at both stages,
a situation that our background knowledge tells us arises with probability 0.25; or with a 𝑑
type in the second stage, which arises with probability 0.5. The conditional probability that
𝑋 caused 𝑌 in this case is, therefore, 0.25/0.75 = 1/3.

We can also use Table 5.1 to figure out the priors—where, to be clear, we mean beliefs prior to
observing 𝐾 albeit posterior to observing 𝑋 and 𝑌 . Here, we represent the four combinations
of types at the two stages that are consistent with our background knowledge. We place a
prior on each combination, also based on this background knowledge. If the 𝑋 → 𝐾 effect is
a 𝑏 type 50% of the time and a 𝑐 type 50% of the time, while the 𝐾 → 𝑌 stage is half 𝑏’s and
half 𝑑’s, then we will have each combination a quarter of the time.

We can then calculate the probability that 𝐾 = 1 for a treated 𝑏 and 𝑑 case respectively as
𝜙𝑏 = 1 and 𝜙𝑑 = 0.5. We can work this out as well from Table 5.1. For 𝜙𝑏, the probability of
𝐾 = 1 for a 𝑏 type, we take the average value for 𝐾|𝑋 = 1 in the rows for which 𝜃 = 𝑏—which
in this case is just the first row, where the value of 𝐾|𝑋 = 1 is 1. For 𝜙𝑑, we take the average
value of 𝐾|𝑋 = 1 in the rows for which 𝜃 = 𝑑: (1 + 0)/2 = 0.5. Note that, when we average
across possible states of the world, we weight each state by its prior probability (though this
weighting falls away here since the priors are the same for each row).

Table 5.1: Worksheet to figure out implied “priors” (Pr(𝜃 = 𝑏|𝑋 = 1, 𝑌 = 1)) and posteriors
(Pr(𝜃 = 𝑏|𝑋 = 1, 𝑌 = 1, 𝐾 = 1) from a chain model for a case with 𝑋 = 1, 𝑌 = 1.

𝜃𝐾 𝜃𝑌 𝜃 𝐾|𝑋 = 1 𝑌 |𝑋 = 1
𝜃 = 𝑏|𝑋 =

𝑌 = 1
𝜃 = 𝑏|𝑋 =
𝑌 = 𝐾 = 1

𝑏𝐾 𝑏𝑌 𝑏 1 1 TRUE TRUE
𝑏𝐾 𝑑𝑌 𝑑 1 1 FALSE FALSE
𝑐𝐾 𝑏𝑌 𝑐 0 0 . .
𝑐𝐾 𝑑𝑌 𝑑 0 1 FALSE .
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Then, using Bayes’ rule (Equation 5.2) we can calculate the updated belief via:

Pr(𝜃 = 𝑏|𝐾 = 1, 𝑋 = 𝑌 = 1) = 1 × 1
3

1 × 1
3 + 1

2 × 2
3

= 1
2

We can also read the answer by simply taking the average value of the last column of Table 5.1,
which has entries only for those cases in which we have 𝑋 = 1, 𝑌 = 1 and 𝐾 = 1. Counting
TRUE as 1 and FALSE as 0, we get an average of 0.5. Thus, upon observing the clue 𝐾 = 1 in
an 𝑋 = 1, 𝑌 = 1 case, we shift our beliefs that 𝑋 = 1 caused 𝑌 = 1 from a prior of 1

3 to a
posterior of 1

2 . In contrast, had we observed 𝐾 = 0, our posterior would have been 0.

One thing that these calculations demonstrate is that, as a practical matter, we do not have
to go through the process of calculating a likelihood to engage in Bayesian updating. If we can
directly calculate Pr(𝐻, 𝑑) and Pr(𝑑), then we can make direct use of Equation 5.1 instead of
Equation 5.2.

A few broader lessons for Bayesian process tracing are worth highlighting.

First, we see that we can draw both our priors on a hypothesis and the probative value of the
evidence from the same causal model. A model-free approach to Bayesian process tracing might
encourage us to think of our priors and the probative values of the evidence as independent
quantities. We might be tempted to engage in thought experiments examining how inferences
change as priors change (as we did, e.g., in the treatment in Humphreys and Jacobs (2015)),
keeping probative value fixed. But such a thought experiment may entertain values of the
relevant probabilities that cannot be jointly justified by any single plausible underlying belief
about how the world works. A model forces a kind of epistemic consistency on the beliefs
entering into process tracing. If we altered the model used in the above illustration—for
example, if we had a stronger first stage and so a larger value for Pr(𝐾 = 1|𝑋 = 0)—this
would alter both our prior, 𝑝, and our calculations of 𝜙𝑑.

Second, we see that, when we use a causal model, our priors and the probative value of evidence
can, in principle, be justified by prior data. For instance, in this case, we show how the relevant
probabilities can be derived from patterns emerging from a series of experiments (and a belief
that the case at hand is not different from—“exchangeable with”—those in the experiment).
We can thus place a lighter burden on subjective beliefs.

Third, contrary to some advice (e.g., Fairfield and Charman (2017), Table 3) we can get by
without a full specification of all alternative causes for 𝑌 = 1. Thinking through alternative
hypotheses may be a very useful exercise for assessing subjective beliefs, but as a general
matter, it is not necessary and may not be helpful. Our background model and data give
enough information to figure out the probability that 𝐾 = 1 if 𝑋 did not cause 𝑌 . To be clear,
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we do not here assume that other causes do not exist; rather, we simply are not required to
engage with them to engage with inference.

Fourth, this basic procedure can be used for many different types of queries, background
models, and clue types. Nothing here is tied to a focus on the treatment effects emanating
from a single cause for a single unit when researchers have access to a single mediator clue.
The generalization is worked through in Chapter 7, but the core logic is all in this example
already.

5.2.1.3 Connection with Classical Qualitative Tests

The example we discussed in the last section was of a “hoop test,” one of the four classical
tests (“smoking gun,” “hoop,” “straw in the wind,” and “doubly decisive”) described by Van
Evera (1997) and Collier (2011). Seeing the clue led to a modest boost in confidence in the
hypothesis, while not seeing the clue fully disconfirmed the hypothesis. In Chapter 15 we show
how all these tests can be derived from more fundamental causal models in the same way.

The hoop test in this example makes use of an extreme probability—a probability of 0 of
not seeing a clue if a hypothesis is true. But the core logic of process-tracing tests does not
depend on such extreme probabilities. Rather, the logic described here allows for a simple
generalization of Van Evera’s typology of tests by conceiving of the certainty and uniqueness
of clues as lying along a continuum. In this sense, the four tests might be thought of as special
cases—particular regions that lie on the boundaries of a “probative-value space.”

To illustrate the idea, we represent the range of combinations of possible probabilities for 𝜙𝑏
and 𝜙𝑑 as a square in Figure 5.2 and mark the spaces inhabited by Van Evera’s tests. As
can be seen, the type of test involved depends on both the probative value of the clue for
the proposition that the unit is a 𝑏 type (monotonic in 𝜙𝑏/𝜙𝑑) and the probative value of the
absence of the clue for the proposition that the units is a 𝑑 type (monotonic in (1−𝜙𝑑)/(1−𝜙𝑏)).
A clue acts as a smoking gun for proposition “𝑏” (the proposition that the case is a 𝑏 type) if it
is highly unlikely to be observed if proposition 𝑏 is false, and more likely to be observed if the
proposition is true (bottom left, above diagonal). A clue acts as a “hoop” test if it is highly
likely to be found if 𝑏 is true, even if it is still quite likely to be found if it is false. Doubly
decisive tests arise when a clue is very likely if 𝑏 and very unlikely if not. It is, however, also
easy to imagine clues with probative values lying in the large space between these extremes.5

5.2.2 A Generalization: Bayesian Inference on Arbitrary Queries

In Chapter 4, we described queries of interest as queries over causal types.

5We thank Tasha Fairfield for discussions around this graph, which differs from that in Humphreys and Jacobs
(2015) by placing tests more consistently on common rays (capturing ratios) originating from (0,0) and (1,1).
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Figure 5.2: A mapping from the probability of observing a clue if the proposition that a case
is a 𝑏 type is true (𝜙 − 𝑏) or false (𝜙 − 𝑑) to a generalization of the tests described
in Van-Evera (1997).
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Returning to our discussion of queries in Chapter 4, suppose we start with the model 𝑋 →
𝑀 → 𝑌 , and our query is whether 𝑋 has a positive effect on 𝑌 . This is a query that is satisfied
by four sets of causal types: those in which 𝑋 has a positive effect on 𝑀 and 𝑀 has a positive
effect on 𝑌 , with 𝑋 being either 0 or 1; and those in which 𝑋 has a negative effect on 𝑀 and
𝑀 has a negative effect on 𝑌 , with 𝑋 being either 0 or 1. Our inferences on the query will
thus involve gathering these different causal types, and their associated posterior probabilities,
together. As we showed in Chapter 4, the same is true for very complex causal estimands.

Once queries are defined in terms of causal types, the formation of beliefs, given data 𝑑, about
queries follows immediately from application of Equation 5.1.

Let 𝑄(𝑞) define the set of types that satisfy query 𝑞, and let 𝐷(𝑑) denote the set of types that
generate data 𝑑 (recall that each causal type, if fully specified, implies a data type).

The updated beliefs about the query are given by the distribution:

𝑝(𝑞′|𝑑) = ∫
𝑄(𝑞′)

𝑝(𝜃|𝑑)𝑑𝜃 =
∫𝑄(𝑞′)∩𝐷(𝑑) 𝑝(𝜃)𝑑𝜃

∫𝐷(𝑑) 𝑝(𝜃′)𝑑𝜃′

This expression gathers together all the causal types (combinations of nodal types) that satisfy
a query and assesses how likely these are, collectively, given the data.6

Return now to Mr. Smith’s puzzle from Section 5.1.1. We can think of the two “nodal types”
here as the sexes of the two children, child 𝐴 and child 𝐵. The query here is 𝑞: “Are both
boys?” The statement “𝑞 = 1” is equivalent to the statement, “𝐴 is a boy & 𝐵 is a boy.”
Thus it takes the value 𝑞 = 1 under just one causal type, when both nodes have been assigned
to the value “boy.” Statement 𝑞 = 0 is the statement “𝐴 is a boy & 𝐵 is a girl” or “𝐴 is
a girl & 𝐵 is a boy” or “𝐴 is a girl & 𝐵 is a girl”. Thus, 𝑞 = 0 in three contexts. If we
assume that each of the two children is equally likely to be a boy or a girl with independent
probabilities, then each of the four contexts is equally likely. The result can then be figured
out as 𝑝(𝑞 = 1) = 1× 1

4
1× 1

4 +1× 1
4 +1× 1

4 +0× 1
4

= 1
3 . This answer requires summing over only one causal

type. The quantity 𝑝(𝑞 = 0) is of course, the complement of this, but using Bayes’ formula
one can see that it can also be found by summing over the posterior probability of the three
causal types for which the statement 𝑞 = 0 is true.

5.3 Features of Bayesian Updating

Bayesian updating has implications that may not be obvious at first glance. These will matter
for all forms of inference we examine in this book, but they can all be illustrated in simple
settings.

6For an abstract representation of the relations between assumptions, queries, data, and conclusions, see Figure
1 in Pearl (2012). For a treatment of the related idea of abduction, see Pearl (2000), p 206.
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5.3.1 Priors Matter

As we noted in the previous section, probative value does not depend upon priors. However,
the amount of learning that results from a given piece of new data can depend strongly on
prior beliefs. We have already seen this with the example of interpreting our test results above.
Figure 5.3 illustrates the point for process tracing inferences.

In each subgraph of Figure 5.3 , we show how much learning occurs under different scenarios.
The horizontal axis indicates the level of prior confidence in the hypothesis, and the curve
indicates the posterior belief that arises if we do (or do not) observe the clue. We label the
figures referencing classic tests that they approximate though, of course, there can be stronger
or weaker versions of each of these tests.

As can be seen, the amount of learning that occurs—the shift in beliefs from prior to posterior—
depends a good deal on what prior we start out with. For the smoking gun example (with
probative value of just 0.9—substantial, but not strong, according to Jeffreys (1998)), the
amount of learning is highest for values around 0.25—and then declines as we have more and
more prior confidence in our hypothesis. For the hoop test (also with probative value of just
0.9), the amount of learning when the clue is not observed is greatest for hypotheses in which
we have middling-high confidence (around 0.75), and minimal for hypotheses in which we have
a very high or a very low level of confidence. At the maximum, beliefs change from 0.74 to
0.26—-a nearly two thirds down weighting of the proposition.

The implication here is that our inferences with respect to a hypothesis must be based not
just on the search for a clue predicted by the hypothesis but also on the plausibility of the
hypothesis, based on other things we know.

We emphasize two respects in which these implications depart from common intuitions.

First, we cannot make general statements about how decisive different categories of test, in
Van Evera’s framework, will be. It is commonly stated that hoop testsare devastating to a
theory when they are failed, while smoking gun tests provide powerful evidence in favor of a
hypothesis. But, in fact the amount learned depends not just on features of the clues but also
on prior beliefs.

Second, although scholars frequently treat evidence that goes against the grain of the exist-
ing literature as especially enlightening, in the Bayesian framework the contribution of such
evidence may sometimes be modest, precisely because received wisdom carries weight. Thus,
although the discovery of disconfirming evidence—an observation thought to be strongly incon-
sistent with the hypothesis—for a hypothesis commonly believed to be true is more informative
(has a larger impact on beliefs) than confirming evidence, this does not mean that we learn
more than we would have if the prior were weaker. It is not true as a general proposition
that we learn more the bigger the “surprise” a piece of evidence is. The effect of disconfirming
evidence on a hypothesis about which we are highly confident can be smaller than it would be
for a hypothesis about which we are only somewhat confident. When it comes to very strong
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Figure 5.3: A smoking in which gun test with greatest impact on beliefs when priors are mid-
dling low and the clue is observed; a ‘hoop test’ in which the greatest effects arise
when priors are middling high and the clue is not observed.
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hypotheses, the “discovery” of disconfirming evidence is very likely to be a false negative; like-
wise, the discovery of supporting evidence for a very implausible hypothesis is very likely to
be a false positive. The Bayesian approach takes account of these features naturally.7

5.3.2 Simultaneous, joint updating

When we update, we often update over multiple quantities. When we see a smoking gun,
for instance, we might update our beliefs that the butler did it, but we might also update
our beliefs about how likely we are to see smoking guns—maybe they are not as rare as we
thought.

Intuitively we might think of this updating as happening sequentially—first of all, we update
over the general proposition, then we update over the particular claim. But in fact, it’s simpler
to update over both quantities at once. What we need to avoid is just updating over some of
the unknown quantities while keeping others fixed.

As a simple illustration, say we thought there were a two thirds chance that we were in World
A in which K serves as a smoking gun test and a one third chance that were in world B in
which K provides a hoop test. Specifically, we have:

World A:

• Pr(𝐻 = 0, 𝐾 = 0|𝑊 = 𝐴) = 1
3

• Pr(𝐻 = 0, 𝐾 = 1|𝑊 = 𝐴) = 0
• Pr(𝐻 = 1, 𝐾 = 0|𝑊 = 𝐴) = 1

3
• Pr(𝐻 = 1, 𝐾 = 1|𝑊 = 𝐴) = 1

3

World B:

• Pr(𝐻 = 0, 𝐾 = 0|𝑊 = 𝐵) = 1
3

• Pr(𝐻 = 0, 𝐾 = 1|𝑊 = 𝐵) = 1
3

• Pr(𝐻 = 1, 𝐾 = 0|𝑊 = 𝐵) = 0
• Pr(𝐻 = 1, 𝐾 = 1|𝑊 = 𝐵) = 1

3

What should we infer when we see 𝐾 = 1. If we knew we were in World A, then on learning
𝐾 = 1 we would be sure that 𝐻 = 1; whereas if we knew that we were in World B, then on
learning 𝐾 we would put the probability that 𝐻 = 1 at 0.5. We might be tempted to infer
that the expected probability that 𝐻 = 1 is then 2

3 × 1 + 1
3 × 1

2 = 5
6 .

This is incorrect because when we observe 𝐾 = 1 we need to update not just on our inferences
given whatever world we are in, but also our beliefs about what world we are in. We might
tackle the problem in three ways.

7We note, however, that one common intuition—that little is learned from disconfirming evidence on a low-
plausibility hypothesis or from confirming evidence on a high-plausibility one—is correct.
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First, we might simplify. Integrating over worlds the joint probabilities for 𝐻 and 𝐾 are:

Average World:

• Pr(𝐻 = 0, 𝐾 = 0) = 1
3

• Pr(𝐻 = 0, 𝐾 = 1) = 1
9

• Pr(𝐻 = 1, 𝐾 = 0) = 2
9

• Pr(𝐻 = 1, 𝐾 = 1) = 1
3

And from these numbers we can calculate the probability 𝐻 = 1 given 𝐾 = 1 as
1
3

1
3 + 1

9
= 3

4 .

TThis is the simplest approach. However, it gives no information about the learning over
worlds. In practice, we might want to keep track of our beliefs about worlds. These might, for
instance, be of theoretical interest and knowing which world we are in may be useful for the
next case we look at.

So in approach 2 we update over the worlds and infer that we are in World A with probability
1
3

2
3

1
3

2
3 + 1

3
2
3

= 1
2 . The numerator is the prior probability of being in World A times the probability

of seeing 𝐾 = 1 given we are in world 𝐴; the denominator is the probability of seeing 𝐾 = 1.
We can now do the correct calculation and infer probability 1

2 × 1 + 1
2 × 1

2 = 3
4 .

In a third approach, we imagine eight possible states and update directly over these eight
states.

• Pr(𝐻 = 0, 𝐾 = 0, 𝑊 = 𝐴) = 2
9

• Pr(𝐻 = 0, 𝐾 = 1, 𝑊 = 𝐴) = 0
• Pr(𝐻 = 1, 𝐾 = 0, 𝑊 = 𝐴) = 2

9
• Pr(𝐻 = 1, 𝐾 = 1, 𝑊 = 𝐴) = 2

9
• Pr(𝐻 = 0, 𝐾 = 0, 𝑊 = 𝐵) = 1

9
• Pr(𝐻 = 0, 𝐾 = 1, 𝑊 = 𝐵) = 1

9
• Pr(𝐻 = 1, 𝐾 = 0, 𝑊 = 𝐵) = 0
• Pr(𝐻 = 1, 𝐾 = 1, 𝑊 = 𝐵) = 1

9

Then applying Bayes’ rule over these states yields the posterior probability:
2
9 + 1

9
2
9 + 1

9 + 1
9

= 3
4 .

The numerator gathers the probability for all states in which 𝐾 = 1 and 𝐻 = 1, and the
denominator gathers the probability for all states in which 𝐾 = 1.

Thus, we have three ways to apply Bayes’ rule in this simple setup.

More generally, we propose that researchers update over a causal model. As we explain
later in this book, updating over a causal model allows us to learn across cases and levels of
analysis: we can make inferences about the case at hand, about the population from which the
case is drawn, and about other cases of interest, given data on those cases. In this example
for instance, the inferences we would draw about future cases could be quite different if we
believed 𝑊 was the same for all units~– and so our uncertainty represents what we might call
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“uncertainty about laws”~– than if we believed that each unit was assigned 𝑊 independently
with a common probability~– in which case we would think of the uncertainty as representing
“uncertainty about units.” Under the former belief, learning from one unit is informative for
learning about another; under the second belief, it is not.

5.3.3 Posteriors Are Independent of the Ordering of Data

We often think of learning as a process in which we start off with some set of beliefs—our
priors—we gather data, and update our beliefs, forming a posterior; we then observe new
data, and we update again, forming a new posterior, having treated the previous posterior as
a new prior. In such scenario, it might seem natural that it would matter which data we saw
first and which later.

In fact, however, Bayesian updating is blind to ordering. If we learn first that a card is a face
card and second that it is black, our posteriors that the card is a Jack of Spades go from 1 in
52 to 1 in 12 to 1 in 6. If we learn first that the card is black and second that it is a face card,
our posteriors that it is a Jack of Spades go from 1 in 52 to 1 in 26 to 1 in 6. We end up in
the same place in both cases. And we would have had the same conclusion if we learned in
one go that the card is a black face card.

The math here is easy enough. Our posterior given two sets of data 𝐷1, 𝐷2 can be written:

𝑝(𝜃|𝐷1, 𝐷2) = 𝑝(𝜃, 𝐷1, 𝐷2)
𝑝(𝐷1, 𝐷2) = 𝑝(𝜃, 𝐷1|𝐷2)𝑝(𝐷2)

𝑝(𝐷1|𝐷2)𝑝(𝐷2) = 𝑝(𝜃, 𝐷1|𝐷2)
𝑝(𝐷1|𝐷2)

or, equivalently:

𝑝(𝜃|𝐷1, 𝐷2) = 𝑝(𝜃, 𝐷1, 𝐷2)
𝑝(𝐷1, 𝐷2) = 𝑝(𝜃, 𝐷2|𝐷1)𝑝(𝐷1)

𝑝(𝐷2|𝐷1)𝑝(𝐷1) = 𝑝(𝜃, 𝐷2|𝐷1)
𝑝(𝐷2|𝐷1)

In other words, our posteriors given both 𝐷1 and 𝐷2 can be thought of as the result of updating
on 𝐷2 given we already know 𝐷1, or as the result of updating on 𝐷1 given we already know
𝐷2.

This fact will be useful in applications. Suppose that we are interested in 𝑋′s effect on 𝑌 ,
starting with a flat prior. We might first encounter data on 𝑋 and 𝑌 for a set of cases. Perhaps
we subsequently observe additional data on (say) a moderator, 𝐾. It might seem natural to
update once from the 𝑋, 𝑌 data and then a second time from the data on 𝐾. Rather than
updating twice, however, the fact that updating is invariant to order means that we can start
with a flat prior and update once with the data on 𝑋, 𝑌 , and 𝐾.
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6 Theories as Causal Models

Chapter summary

We embed the notion of a “theory” into the causal-models framework. We describe a
conceptual hierarchy in which a theory is a “lower level” model that explains or justifies
a “higher level” model. The approach has implications for the logical consistency of
our inferences and for assessing when and how theory is useful for strengthening causal
claims.

In Chapter 3, we described a set of theories and represented them as causal models. But so
far we haven’t been very explicit about what we mean by a theory or how theory maps onto
a causal-model framework.

In this book, we will think of theory as a type of explanation: A theory provides an account of
how or under what conditions a set of causal relationships operate. We generally express both
a theory and the claims being theorized as causal models: A theory is a model that implies
another model—possibly with the help of some data.

To fix ideas: a simple claim might be that “A caused B in case 𝑗”. This claim is itself a model,
albeit a very simple one. The theory that supports this model might, for instance, be of any
of the following forms:

• “A always causes B”
• “A always causes B whenever C, and C holds in case j”, or

• “A invariably causes M and invariably M causes B”.

All of these theories have in common that they are arguments that could be provided to
support the simple claim that A causes B is a particular case. In each case, if you believe the
theory, you believe the implication.

We can also think about theoretical implications in probabilistic terms. Suppose that we start
with a simple claim of the form “A likely caused B in case 𝑗.” That probabilistic simple claim
could follow from a theory that reflected uncertainty about causal processes, such as: “A
usually causes B or”A always causes B whenever C, and C probably holds in case j.”1

1The claim could also follow from a theory that reflected beliefs about heterogeneity of causal processes. For
a review of rival approaches to scientific explanation see Woodward (2003).
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The rest of this chapter builds out this logic and uses it to provide a way of characterizing
when a theory is useful or not.

In the first section, we consider multiple senses in which one model might imply, and thus
serve as a theory of, another model.

• First, we consider how one causal structure can imply (serve as a theory of) another
causal structure, by including additional detail that explains how or when causal effects
in the other model will unfold. If structural model 𝐴 implies structural model 𝐵, then
𝐴 is a theory of 𝐵.

• We then turn to logical relations between probabilistic models. We show how the distribu-
tions over nodal types in a simpler model structure can be underwritten by distributions
over nodal types in a more detailed model structure. Here, a claim about the prevalence
(or probability) of causal effects in a causal network is justified by claims about the
prevalence or probability of causal effects in a more granular rendering of that causal
network.

• Finally, we show how a probabilistic model plus data can provide a theoretical under-
pinning for a new, stronger model. The new model is again implied by another model,
together with data.

In the second section, we consider how models-as-theories-of can be useful. In embedding
theorization within the world of causal models, we ultimately have an empirical objective in
mind. In our framework, theorizing a causal relationship of interest means elaborating our
causal beliefs about the world in greater detail. As we show in later chapters, theorizing in
the form of specifying underlying causal models allows us to generate research designs: to
identify sources of inferential leverage and to explicitly and systematically link observations of
components of a causal system to the causal questions we seek to answer. In this chapter, we
point to ways in which the usefulness of theories can be assessed.

In the chapter’s third and final section, we discuss the connection between the kinds of theories
we focus on—what might be called empirical theories—and analytic theories of the kind devel-
oped for instance by formal theorists. Moving from one to the other requires a translation and
we illustrate how this might be done by showing how we can generate a causal model from a
game-theoretic model.

6.1 Models as Theories Of

Let us say that a causal model, 𝑀 ′, is a theory of 𝑀 if 𝑀 is implied by 𝑀 ′. It is a theory
because it has implications. Otherwise, it is a conclusion, an inference, or a claim.

A theory, 𝑀 ′, might itself sit atop—be supported by—another theory, 𝑀 ′′, that implies 𝑀 ′.
To help fix the idea of theory as “supporting” or “underlying” the model(s) it theorizes, we
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refer to the theory, 𝑀 ′, as a lower-level model relative to 𝑀 and refer to 𝑀 as a higher-level
model relative to its theorization, 𝑀 ′.2

Both structural models and probabilistic models—possibly in combination with data—imply
other models.

6.1.1 Implications of Structural Causal

A structural model can imply multiple other simpler structural models. Similarly, a structural
model can be implied by multiple more complex models.

Theorization often involves a refinement of causal types, implemented through the addition of
nodes. Take the very simple model, 𝑀 , represented in Figure 6.1(a). The model simply states
that 𝑋 has (or can have) a causal effect on 𝑌 .

What theories might justify 𝑀? This question can be rephrased as “what models imply model
𝑀?” The figure points to two possibilities. Both models 𝑀 ′ and 𝑀 ′′ imply model 𝑀 . They
can be thought of as theories, or lower level models, of 𝑀 .

Model 𝑀 ′ differs from 𝑀 by the addition of a node, 𝐾, in the causal chain between 𝑋 and
𝑌 . We can say that 𝑀 ′ is a theory of 𝑀 for two reasons. First, it provides a justification—if
you believe 𝑀 ′ you should believe 𝑀 . If 𝑋 affects 𝑌 through 𝐾, then 𝑋 affects 𝑌 . But as
well as a justification, it also provides an explanation of 𝑀 . Suppose we already know that 𝑋
affects 𝑌 but want to know why. If we ask, “Why does 𝑋 affect 𝑌 ?”, 𝑀 ′ provides an answer:
𝑋 affects 𝑌 because 𝑋 affects 𝐾, and 𝐾 affects 𝑌 .

Model 𝑀 ′′ differs from 𝑀 by the addition of a node, 𝐶, that moderates the effect of 𝑋 on 𝑌 .
𝑀 ′′ justifies 𝑀 in the sense that, if you believe 𝑀 ′′, you should believe 𝑀 . 𝑀 ′′ provides an
explanation of a kind also: If you believe model 𝑀 ′′, then you likely believe that the relation
between 𝑋 and 𝑌 is what it is because of 𝐶’s value. Had 𝐶 been different, the causal relation
between 𝑋 and 𝑌 might have also been different.

Both of these models imply 𝑀 but themselves constitute stronger—that is, more specific—
claims about the world than does 𝑀 . For instance, 𝑀 ′ stipulates not only that 𝑋 can affect
𝑌 but that such an effect must operate via 𝐾. For this reason, the two theories should be
harder to accept than 𝑀—and so may themselves need to be defended, or theorized, by even
lower level models.

Importantly, both 𝑀 ′ and 𝑀 ′′ involve a redefinition of 𝜃𝑌 relative to model 𝑀 . We see a
change in the endogenous nodes as we go down a level (the addition of 𝐾 or 𝐶) —and these

2We note that our definition of theory differs somewhat from that given in Pearl (2009) (p207): there a theory
is a structural causal model and a restriction over the possible values of exogenous but not a probabil-
ity distribution over these nodes. Our definition also considers probabilistic models as theories, allowing
statements such as “the average effect of 𝑋 on 𝑌 in some domain is 0.5.”
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changes, in turn, imply a change in the interpretation of the exogenous, 𝜃 nodes pointing into
existing endogenous nodes (such as 𝑌 in this example).

As we move down a level, we can think of a part of 𝜃𝑌 as being splintered off and captured
by a new component of the more detailed model. Consider, for instance, the move from 𝑀
down to 𝑀 ′. In moving from the higher- to the lower level model, we have effectively split the
nodal-type term 𝜃𝑌 into two parts: 𝜃𝑌lower and 𝜃𝐾. Intuitively, in the higher level model, 𝑀 ,
𝑌 is a function of 𝑋 and 𝜃𝑌 , the latter representing all things other than 𝑋 than can affect
𝑌 . Or, in the language of our nodal-type setup, 𝜃𝑌 represents all of the (unspecified) sources
of variation in 𝑋’s effect on 𝑌 . When we insert 𝐾 into the model, however, 𝑋 now does not
directly affect 𝑌 but only does so via 𝐾. Further, we model 𝑋 as acting on 𝐾 in a manner
conditioned by 𝜃𝐾; and 𝜃𝐾 represents all of the unspecified factors determining 𝑋’s effect on
𝐾. The key thing to notice here is that 𝜃𝐾 now represents a portion of the variance that 𝜃𝑌

represented in the higher level graph: Some of the variation in 𝑋’s effect on 𝑌 now arises from
variation in 𝑋’s effect on 𝐾, which is captured by 𝜃𝐾.

So, for instance, 𝑋 might have no effect on 𝑌 because 𝜃𝐾 takes on the value 𝜃𝐾
00, meaning that

𝑋 has no effect on 𝐾. Put differently, any effect of 𝑋 on 𝑌 must arise from an effect of 𝑋 on
𝐾; so 𝜃𝐾’s value must be either 𝜃𝐾

01 or 𝜃𝐾
10 for 𝑋 to affect 𝑌 . 3 What 𝜃𝐾 represents, then, is

that part of the original 𝜃𝑌 that arose from some force other than 𝑋 operating at the first step
of the causal chain from 𝑋 to 𝑌 . So now, 𝜃𝑌 in the lower level graph is not quite the same
entity as it was in the higher level graph. In the original graph, 𝜃𝑌 represented all sources of
variation in 𝑋’s effect on 𝑌 . In the lower level model, with 𝐾 as a mediator, 𝜃𝑌 represents
only the variation in 𝐾’s effect on 𝑌 . In the move from model 𝑀 down to model 𝑀 ′, 𝜃𝑌 has
been expunged of any factors shaping the first stage of the causal process, which now reside
in 𝜃𝐾. We highlight this change in 𝜃𝑌 ’s meaning by referring in the second model to 𝜃𝑌lower .

Consider next model 𝑀 ′′ in Figure 6.1, which also supports (implies) the higher level model,
𝑀 . The logical relationship between models 𝑀 and 𝑀 ′′, however, is somewhat different. Here
the lower level model specifies one of the conditions that determined the value of 𝜃𝑌 in the
higher level model. In specifying a moderator, 𝐶, we have extracted 𝐶 from 𝜃𝑌 , leaving 𝜃𝑌lower

to represent all factors other than 𝐶 that condition 𝑌 ’s response to its parents. More precisely,
𝜃𝑌lower now represents the set of nodal types defining how 𝑌 responds jointly to 𝑋 and 𝐶.
Again, the relabeling as 𝜃𝑌lower reflects this change in the term’s meaning. Whereas in Model
𝑀 ′ we have extracted 𝜃𝐾 from 𝜃𝑌 , in Model 𝑀 ′′, it is 𝐶 itself that we have extracted from
𝜃𝑌 , specifying as a substantive variable what had been just a random disturbance.

3As we emphasize further below, it is in fact only the random, unknown component of the 𝑋 → 𝐾 link that
makes the addition of 𝐾 potentially informative as a matter of research design: If 𝐾 were a deterministic
function of 𝑋 only, then knowledge of 𝑋 would provide full knowledge of 𝐾, and nothing could be learned
from observing 𝐾.
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(a) A Higher−Level Model, M
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(b) Lower−Level Model, M': Disaggregating via Mediation
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(c) Lower−Level Model M'': Disaggregating via Moderation

Figure 6.1: Two theories—lower level models—that explain a higher level model.
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6.1.2 Probabilistic Models Implied by Lower Level Probabilistic Models

We used Figure 6.1 to show how one structural model can be implied by another. In the same
way, one probabilistic model can be implied by another. If a higher level probabilistic model
is to be implied by a lower level probabilistic model, consistency requires that the probability
distributions over exogenous nodes for the higher level model are those that are implied by
the distributions over the exogenous nodes in the lower level model.

To illustrate, let us add a distribution over 𝜃𝐾 and 𝜃𝑌
lower to the structural model 𝑀 ′ in

Figure 6.1(b). This gives us a probabilistic causal model. We will call this model 𝑀𝑝
lower.

𝑀𝑝
lower, in turn, implies a higher level probabilistic model, 𝑀𝑝

higher: 𝑀𝑝
higher is formed from the

structure of Model (a) in Figure 6.1 together with a particular distribution over 𝜃𝑌 . Specifically,
𝜃𝑌 must have the distribution that preserves the causal relations implied by the probabilistic
beliefs in 𝑀𝑝

lower.

Recall that 𝜆 represents population-shares over causal types, and thus a probability distribu-
tion over 𝜃. So for instance the probability that 𝜃𝑌

00 is simply 𝜆𝑌
00. So we have:

1. In 𝑀𝑝
higher, the probability that 𝑋 has a positive effect on 𝑌 is 𝜆𝑌

01.

2. In 𝑀𝑝
lower, the probability that 𝑋 has a positive effect on 𝑌 is 𝜆𝐾lower

01 𝜆𝑌lower
01 +𝜆𝐾lower

10 𝜆𝑌lower
10 .

That is, it is the probability that we have a chain of linked positive effects plus the
probability that we have a chain of linked negative effects—the two ways in which we
can get a positive total effect of 𝑋 on 𝑌 in this model.

Consistency then requires a particular equality between the distributions (𝜆s) at the two levels.
Specifically, it requires that 𝜆𝑌higher

01 = 𝜆𝑀lower
01 𝜆𝑌lower

01 + 𝜆𝐾lower
10 𝜆𝑌lower

10 . So the value of 𝜆𝑌higher
01 is

implied by 𝜆𝐾lower
01 , 𝜆𝑌lower

01 , 𝜆𝐾lower
10 , 𝜆𝑌lower

10 .

In other words, the probability of a positive 𝑋 → 𝑌 effect must be the same in 𝑀𝑝
higher as it

is in 𝑀𝑝
lower. Otherwise, 𝑀𝑝

higher cannot be implied by 𝑀𝑝
lower, and the latter cannot serve as a

theory of the former.

While the probability distributions in a lower level model must imply the probability distribu-
tions in the higher level model that it supports, the converse may not be true: Knowing the
distribution over exogenous nodes of a higher level model does not provide sufficient informa-
tion to recover distributions over exogenous nodes in the lower level model. So, for instance,
knowing 𝜆𝑌higher does not give us enough information to determine the values of 𝜆𝑌lower and
𝜆𝐾lower . This is because there are many different combinations of 𝜆𝐾lower

01 , 𝜆𝑌lower
01 , 𝜆𝐾lower

10 , and
𝜆𝑌lower

10 that will add up to any given value for 𝜆𝑌higher .
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6.1.3 Models Justified by Theory and Data

Finally, we can think of a higher level model as being supported by a lower level model
combined with data. For this reason, we can fruitfully think of an initial model—when coupled
with data—as constituting a theory of an updated model.

To see how this might work, imagine a scholar arguing: “𝑀1: 𝑋 caused 𝑌 in country 𝑗.” When
pushed for a justification for the claim, they provide the lower level model: “𝑀0 ∶ 𝑋 causes 𝑌
if and only if 𝐶 = 1. Further, in this case, 𝐶 = 1 and so 𝑋 caused 𝑌 in this case.”

Here 𝑀1 is implied by 𝑀0 plus data 𝐶 = 1.

We can take this further. If pushed now as to why 𝑀0 is itself credible, the scholar might point
to an even lower level model consisting of structural relations 𝑋 → 𝑌 ← 𝐶 plus flat priors
over all nodal types—coupled with data on 𝑋, 𝑌 and 𝐶, where the data justify the higher level
belief about 𝐶’s moderation of 𝑋’s effect on 𝑌 .

As further justifications are sought, researchers seek acceptable lower models that, together
with data, can justify higher level models. Note that, as we move down levels in this hierarchy
of models, we may be—helpfully—moving from models that are harder to accept down to
models that are easier to accept, because we are bringing data to bear. So, in the above
example, it should be easier to accept 𝑋 → 𝑌 ← 𝐶 with flat priors than to accept the claim
that “𝑋 causes 𝑌 if and only if 𝐶 = 1.” But the former works to justify the latter because we
join it up with the data on 𝑋, 𝑌 and 𝐶.

6.2 Gains from Theory

We now turn to consider how to think about whether a theory is useful. We are comfortable
with the idea that theories, or models more generally, are wrong. Models are not full and
faithful reflections of reality; they are maps designed for a particular purpose. We make use
of them because we think that they help in some way.

But how do they actually help, and can we quantify the gains we get from using them?

We think we can.

6.2.1 Illustration: Gains from a Front-Door Theory

Here is an illustration with a theory that allows the use of the “front-door criterion” (Pearl
2009). The key idea is that by invoking a theory for a model—which itself may require
justification—one can draw inferences that would not have been possible without the theory.

Imagine we have a structural causal model 𝑀0: 𝐶 → 𝑋 → 𝑌 ← 𝐶, as depicted in panel (a)
of Figure 6.2. Here, 𝐶 is a confound for the relationship between 𝑋 and 𝑌 . Say we have data
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on three variables, 𝑋, 𝑌 , and 𝐾 (a node that is not included in 𝑀0). So we have data for two
of the nodes in 𝑀0 plus additional data on 𝐾, but we do not have data on 𝐶.

Now let’s form a probabilistic causal model, 𝑀𝑝
0 , by adding flat priors to 𝑀0. Joining the 𝑋

and 𝑌 data to probabilistic model 𝑀𝑝
0 , we can then generate an updated model, 𝑀𝑝

1 , with
a probability distribution that reflects our learning from the data. Suppose that the data
here display a strong correlation between 𝑋 and 𝑌 . What kind of beliefs will 𝑀𝑝

1 contain?
From 𝑀𝑝

1 , we would consider a causal connection between 𝑋 and 𝑌 to be plausible—but quite
uncertain. This uncertainty arises because we are aware that the correlation we see may be due
to the unobserved confound 𝐶, and we currently have no leverage for distinguishing between
a causal effect and confounding.

Suppose, however, that we now posit the lower level structural model 𝑀 ′
0: 𝐶 → 𝑋 → 𝐾 →

𝑌 ← 𝐶, as depicted in panel (b) of Figure 6.2. 𝑀 ′
0 implies 𝑀0 in the structural sense discussed

in Section 6.1.1.

𝑀 ′
0 makes a stronger claim than 𝑀0: 𝑀 ′

0 presupposes a specific pathway between 𝑋 and 𝑌
that 𝑀0 does not. Critically, however, if we accept 𝑀 ′

0, then we can make use of our data on
node, 𝐾, which was impossible when working with 𝑀0.

Specifically, we can now:

• turn 𝑀 ′
0 into a probabilistic model 𝑀 ′𝑝

0 ;
• use data on 𝑋, 𝑌 , and 𝐾 to move to an updated version, 𝑀 ′𝑝

1 ; notably, data on the
mediator 𝐾 may help us sort out whether the 𝑋, 𝑌 correlation is causal or a consequence
of confounding;

• pose our causal question to 𝑀 ′𝑝
1 , which has been informed by data on 𝐾.

This perhaps all seems a bit convoluted, so it is fair to ask: what are the gains? This depends
on the data we observe, of course. If we observe, for instance, that 𝑋 and 𝐾 are strongly
correlated and that 𝐾 and 𝑌 are strongly correlated, then beliefs in 𝑀 ′𝑝

1 will reflect confidence
that, in fact, 𝑋 does cause 𝑌 —whereas with 𝑀𝑝

1 we were very uncertain.

Thus, in return for specifying a theory of 𝑀0, we may be able to make better use of data and
form a more confident conclusion.

In other situations, we might imagine invoking a theory that does not necessarily involve new
data, but that allows us to make different, perhaps tighter inferences using the same data. An
example might be the invocation of theory that involves a monotonicity restriction or exclusion
restriction that allows for the identification of a quantity that would not be identifiable without
the theory.

Thus, one reason to theorize our models—develop lower level models that make stronger
claims—is to be able to reap greater inferential leverage from the more elaborated theory
when we go to the data.
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(a) A higher level model, M0
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(b) A lower level model M′0

Figure 6.2: A lower level model is invoked as a theory of a higher level model which in turn
allows identification of the effects of X on Y.

6.2.2 Quantifying gains

Can we quantify how much better off we are?

We need some evaluation criterion—some notion of “better off”—to answer this question. Two
of the more intuitive criteria might be based on:

• Error: An error-based evaluation asks whether the theory helped reduce the (absolute)
difference between an estimate and a target; similarly, we might focus on squared error—
which essentially places more weight on bigger errors

• Uncertainty: We might instead assess gains in terms of reduced uncertainty. We might
measure uncertainty using the variance of our beliefs, or we might use relative entropy
to assess reductions in uncertainty

Other criteria (or loss functions) might focus on other features. For instance, we might ask
whether the data we see are explained by the theory in the sense that they are more likely—less
surprising—given the theory. Or we might want a criterion that takes account of the costs of
collecting additional data or to the risks associated with false conclusions. For instance, in
Heckerman, Horvitz, and Nathwani (1991), an objective function is generated using expected
utility gains from diagnoses generated from new information over diagnoses based on what is
believed already.

Beyond specifying a criterion, we also can approach any criterion from a “subjective” or an
“objective” position. Are we concerned with how uncertain we will be as researchers, or do we
seek to benchmark our inferences against the true state of the world?
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We can, further, distinguish between evaluation from an ex ante or an ex post perspective. Are
we evaluating how we expect to do under a given theory before we have seen the data, or how
we have done after we have drawn our inferences? Table 6.1 shows how these two dimensions
might be crossed to generate four different approaches to evaluating learning.

Table 6.1: Learning metrics.

Ex ante Ex post
Subjective Expected posterior variance Posterior variance, Change in

beliefs, Wisdom
Objective Expected mean squared error Error, squared error

So, for instance, in the top left quadrant (subjective/ex ante), we are interested in how uncer-
tain we expect to be if we work with a given theory; in the bottom left quadrant (objective/ex
ante), we are asking how far off we expect to be from some ground truth. In the second column,
we are asking how uncertain we are about an inference we have made (subjective/ex post), or
about how far off we have ended up from a ground truth (objective/ex post).

We now use this 2×2 structure to walk through possible metrics for gains from theory, focusing
on a situation in which a theory lets us use additional data 𝐾 to make inferences. Thus, when
we speak of the gains from the theory, we mean the gains that come from the use of 𝐾 in the
ways made possible by the theory.

In this setup, we imagine that there is an unknown parameter, 𝑞 ∈ {0, 1}, and we are interested
in the value of 𝑞 for a single unit drawn from some population. We have beliefs about the
distribution of 𝐾, given 𝑞. Let 𝑝(𝑞, 𝑘) denote the joint distribution over 𝑞 and 𝑘 with marginal
distributions 𝑝(𝑘) and 𝑝(𝑞). Let 𝑝(𝑞|𝑘) denote a researcher’s posterior given 𝑘, which we
abbreviate to ̂𝑞𝑘.

For the illustrations that follow, imagine that we start with a (subjective) prior that 𝑞 = 1 of
𝑝 = 0.2. And so our prior expectation for 𝑞 is ̂𝑞0 = 𝑝 = 0.2. We’ll assume that that belief is
correct, in the sense that q=1 for one fifth of units in the population.

Now, we have a theory under which we believe that 𝑝(𝑘 = 1|𝑞 = 1) = .8 and that 𝑝(𝑘 = 1|𝑞 =
0) = .2. Importantly, we will imagine that these two beliefs are incorrect, however: that, in
fact, 𝑝(𝑘 = 1|𝑞 = 1) = 𝑝(𝑘 = 1|𝑞 = 0) = .5. Our theory, then, is wrong. We think 𝐾 is
informative, but in fact it is not. This difference between what our theory tells us and what
the truth is will allow us to illustrate different conceptualizations of learning.

The key features of this example are summarized in Table 6.2. Each row here (or “event”)
represents a different situation we might end up in: A different combination of what the true
answer to our query is (𝑞 is 0 or 1) and of what we observe when we examine 𝐾 (𝑘 = 1 or
𝑘 = 0). All four rows are ex ante possible.
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Table 6.2: Possible events, event probabilities, and inferences.

𝑞 (Unobserved) 𝑘 (Observable) Event probability
(subjective)

Event probability
(objective)

Inference on 𝑞
given 𝑘

Actual (squared)
Error

Posterior variance

0 0 0.64 0.4 0.059 0.003 0.055
0 1 0.16 0.4 0.500 0.250 0.250
1 0 0.04 0.1 0.059 0.886 0.055
1 1 0.16 0.1 0.500 0.250 0.250

Say, now, that we in fact observe 𝑘 = 1 and update to 𝑞1 = 𝑝(𝑞 = 1|𝑘 = 1) =
𝑝(𝑘=1|𝑞=1)𝑝(𝑞=1)

𝑝(𝑘=1|𝑞=1)𝑝(𝑞=1)+𝑝(𝑘=1|𝑞=0)𝑝(𝑞=0) = 0.8×0.2
0.8×0.2+0.2×0.8 = 0.5. Suppose, however, that, unbeknownst

to us, in reality 𝑞 = 0. So we are in fact in row 2 of this table (𝑞 = 0, 𝑘 = 1). But since we
cannot observe 𝑞, we do not know whether we are in row 2, where 𝑞 = 0, or row 4, where
𝑞 = 1.

Let’s now think about different ways of characterizing the gains from observing 𝐾, the piece
of evidence made usable by our theory.

6.2.2.1 Objective, ex post

If we are willing to posit an external ground truth, then we can define “better” in objective
terms. For instance, we might calculate the size of the error (or, more typically, the squared
error) we make in our conclusions relative to the ground truth. We can then compare the error
we make when we use the theory (and the clue that that theory makes usable) to draw an
inference to the error that we make when we draw an inference without the aid of the theory
(and its associated clue).

The difference in squared errors is given by (𝑞 − ̂𝑞𝑘)2 − (𝑞 − ̂𝑞0)2.

In the numeric example, our objective ex post (squared) error is (0 − .5)2 = 0.25 (using 𝐾),
which compares unfavorably to our prior error (0−0.2)2 = .04 (without using 𝐾). Objectively,
after the fact, we are worse off basing inferences on 𝐾 than we were before. Note that we move
in the wrong direction here not only because our theory about the informativeness of the clue
is incorrect, but also because in this instance the clue realization that we happen upon points
us in the wrong direction.

6.2.2.2 Objective, ex ante

Rather than asking how wrong we are given the data pattern we happened to observe, we can
ask how wrong we are expected to be when we go looking for a clue that our theory makes
usable (we say “are expected to be” rather than “we expect to be” because the evaluation may
be made using beliefs that differ from the beliefs we bring with us when we draw inferences).
An objective ex ante approach would ask what the expected error is from the conclusions that
we will draw given a theory. For instance: how wrong are we likely to be if we base our best
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guess on our posterior mean, given the observation of a clue that the theory lets us make use
of? “How wrong” might again be operationalized in different ways: for instance, in terms
of expected squared error—the square of the distance between the truth and the posterior
mean.

The expected squared error (see also Section 5.1.6) is:

ℒ ∶= ∫
𝑞

∫
𝑘

( ̂𝑞𝑘 − 𝑞)2 𝑝(𝑘, 𝑞)𝑑𝑘𝑑𝑞

This equation yields the error that one would expect to get with respect to any true value of
the parameter (𝑞), given the data one might see given 𝑞 and the inferences one might draw.
Note here that the joint distribution 𝑝(𝑘, 𝑞) is the objective (unknown) distribution, whereas
the posterior ̂𝑞𝑘) is calculated using the researcher’s subjective beliefs. In principle, ex ante
can be thought of with respect to the the new information 𝑘 or also with respect to the actual
estimand 𝑞; we will work with the latter.

Returning to the numeric example, we can calculate the expected (actual) squared error with
respect to the objective event probabilities in Table 6.2. This yields here 0.215. This might be
compared (unfavorably) to the expected error if we just used the prior (0.2) on 𝑞, given the
objective distribution of events. This would give expected (squared) error of 0.16.

We do badly in expectation not just because the theory is wrong, but because it is very wrong.
We might have done better, and gained from the theory, in expectation, had the theory only
been moderately wrong. To see this, imagine instead that in fact 𝑝(𝑘 = 1|𝑞 = 1) = 0.7, 𝑝(𝑘 =
1|𝑞 = 0) = 0.3 and so the probabilities of the four events are (0.56, 0.24, 0.06, 0.14). Then,
although we are overestimating the probative value of 𝑘, we are not wrong about 𝑘 being
informative. In this situation, where the theory is less wrong, our expected error would be
0.15—an improvement relative to our prior.

6.2.2.3 Subjective, ex post

The problem, of course, with an objective approach is that we do not have the information—the
true values of our queries—that we need to calculate objective errors.

A more subjective approach involves asking about the reduction in posterior variance. Ex post
we can define “better” as the reduction in posterior variance from drawing an inference that
makes use of a theory and its associated clue compared to an inference that does not.

A problem with this measure, however, is that posterior variance is not guaranteed to go down:
Our uncertainty can increase as we gather more data. Importantly, however, that increase in
uncertainty would not mean that we have not been learning. Rather, we have learned that
things are not as simple as we thought—so we become less certain than we were before, in a
manner justified by what we have observed.
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One approach that addresses this issue asks: How much better are our guesses having observed
𝐾 compared to what we would have guessed before, given what we know having observed 𝐾?
This question captures the idea that, although we might be more uncertain than we were
before, we think we are better off now because we are less naive. We might call this kind of
improvement wisdom to reflect the idea that it values appreciation of justifiable uncertainty:

Wisdom = ∫ (( ̂𝑞0 − 𝑞)2 − ( ̂𝑞𝑘 − 𝑞)2) 𝑝(𝑞|𝑘)𝑑𝑞
∫( ̂𝑞0 − 𝑞)2𝑝(𝑞)𝑑𝑞 = ( ̂𝑞0 − ̂𝑞𝑘)2

̂𝑞0(1 − ̂𝑞0)

The numerator in this expression captures how much better off we are with the guess we have
made given current data ( ̂𝑞𝑘) compared to the guess we would have made if we had a theory
that did not let us make use of it ( ̂𝑞0), all assessed knowing what we now know. This can be
interpreted simply as the subjective reduction in error (squared). 4 The denominator is simply
the prior variance and is included here for scaling.

Returning to the numeric example, our posterior variance after observing 𝑘 = 1 is 0.25 com-
pared to a prior variance of 0.16. So variance has increased. However, we have a gain in
wisdom of 0.09

0.16 , reflecting how much better we believe our beliefs are compared to how they
were before.

6.2.2.4 Subjective, ex ante

Finally, we might think about the contributions to learning that we expect from a theory
before observing the data. We can conceptualize expected learning as the reduction in expected
posterior variance: How certain do we expect we will be after we make use of new information?
(See also our discussion in Section 5.1.6.)

For any 𝑘, we might write the posterior variance on ̂𝑞𝑘 given observation 𝑘 as 𝑉 ( ̂𝑞𝑘). Then,
the expected posterior variance can be written:

4The numerator simplifies according to:

∫ (( ̂𝑞0 − 𝑞)2 − ( ̂𝑞𝑘 − 𝑞)2) 𝑝(𝑞|𝑘)𝑑𝑞 = ∫ ( ̂𝑞2
0 − 2𝑞 ̂𝑞0 − ̂𝑞2

𝑘 + 2𝑞 ̂𝑞𝑘) 𝑝(𝑞|𝑘)𝑑𝑞

= ( ̂𝑞2
0 − 2 ̂𝑞𝑘 ̂𝑞0 − ̂𝑞2

𝑘 + 2 ̂𝑞2
𝑘)

= ( ̂𝑞0 − ̂𝑞𝑘)2

From this we see that the measure does not depend on either prior or posterior variance (except through
the denominator). Note also that wisdom, though non negative, can exceed 1 in situations in which there
is a radical re-evaluation of a prior theory, even if uncertainty rises. As an illustration, if our prior on
some share is given by a Beta(2, 18) distribution, then our prior mean is .1, and our prior variance is very
small, at 0.0043. If we observe another four positive cases, then our posterior mean becomes 1/4 and our
posterior variance increases to 0.0075. We have shifted our beliefs upward and at the same time, become
more uncertain. But we are also wiser since we are confident that our prior best guess of .1 is surely an
underestimate. Our wisdom is 5.25—a dramatic gain.
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𝐸𝑉 ∶= ∫
𝑘

𝑉 ( ̂𝑞𝑘)𝑝(𝑘)𝑑𝑘

This equation takes the posterior variance, given some data, over all the possible data that
one might encounter given distribution 𝑝(𝑘). It is well known that whenever inferences are
sensitive to the data, the expected posterior variance will be lower than the prior variance.5
Interestingly, it is also the case that, if we assess expectations using the same priors that we
use for forming posteriors, the expected posterior variance and squared error are equivalent
(Scharf 1991).^[To see this, we take advantage of the fact that 𝑝(𝑞, 𝑘) = 𝑝(𝑘)𝑝(𝑞|𝑘) = 𝑝(𝑞)𝑝(𝑘|𝑞)
and that 𝑝(𝑞|𝑘) gives the posterior distribution of 𝑞 given 𝑘. We then have:

ℒ = ∫
𝑞

∫
𝑘

( ̂𝑞𝑘 − 𝑞)2 𝑝(𝑞, 𝑘)𝑑𝑘𝑑𝑞 (6.1)

= ∫
𝑘

∫
𝑞

( ̂𝑞𝑘 − 𝑞)2 𝑝(𝑘)𝑝(𝑞|𝑘)𝑑𝑞𝑑𝑘 (6.2)

= ∫
𝑘

[∫
𝑞

( ̂𝑞𝑘 − 𝑞)2 𝑝(𝑞|𝑘)𝑑𝑞] 𝑝(𝑘)𝑑𝑘 (6.3)

= ∫
𝑘

𝑉 ( ̂𝑞𝑘)𝑝(𝑘)𝑑𝑘 = 𝐸𝑉 (6.4)

The key move is in recognizing that 𝑝(𝑞|𝑘) is in fact the posterior distribution on 𝑞 given 𝑘. In
using this, we assume that the same distribution is used for assessing error and for conducting
analysis—that is we take the researcher’s prior to be the relevant one for assessing error.]
Moreover, the reduction in expected posterior variance is also equal to expected wisdom.6

5This can be seen from the law of total variance which can be written as:

𝑉 𝑎𝑟(𝑄|𝑊) = 𝐸𝐾|𝑊 (𝑉 𝑎𝑟(𝑄|𝐾, 𝑊)) + 𝑉 𝑎𝑟𝐾|𝑊 (𝐸(𝑄|𝐾, 𝑊))

The expression is written here to highlight the gains from observation of 𝐾, given what is already known
from observation of 𝑊 . See Raiffa and Schlaifer (1961). A similar expression can be given for the expected
posterior variance from learning 𝐾 in addition to 𝑊 when 𝑊 is not yet known. See, for example, Proposition
3 in Geweke and Amisano (2014). Note also that an implication is that the expected reduction in variance
is then always positive, provided you are changing beliefs at all. In contrast, the (objective) expected error
measure can be assessed under rival theoretical propositions, allowing for the real possibility that the gains
of invoking a theory are negative.

6That is, since:

Wisdom = ∫ (( ̂𝑞0 − 𝑞)2 − ( ̂𝑞𝑘 − 𝑞)2) 𝑝(𝑞|𝑘)𝑑𝑞
∫( ̂𝑞0 − 𝑞)2𝑝(𝑞)𝑑𝑞 ,

we have:

Expected Wisdom =
∫( ̂𝑞0 − 𝑞)2𝑝(𝑞)𝑑𝑞 − ∫𝑘 ∫𝑞( ̂𝑞𝑘 − 𝑞)2𝑝(𝑞, 𝑘)𝑑𝑞𝑑𝑘

∫( ̂𝑞0 − 𝑞)2𝑝(𝑞)𝑑𝑞
and so:

Expected Wisdom = 1 − Expected Posterior Variance
Prior variance
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Returning to the numeric example in Table 6.2, the expected posterior variance (with expec-
tations taken with respect to the subjective event probability distribution) is 0.118. Note that
we would also get 0.118 if we took the expectation of the actual squared error with respect to
subjective event probability distribution. The reduction in posterior variance over the prior
variance of 0.16 is 26.47%.

We have described a set of possible metrics for gains from theory, but there is no single right
metric. The right metric for assessing gains fundamentally depends on what the researcher
values—whether that is making fewer errors, being confident in conclusions, avoiding overcon-
fidence, or something else.

6.3 Formal Theories and Causal Models

It is relatively easy to see how the ideas above play out for what might be called empirical
models. But in social sciences, “theory” is a term sometimes reserved for what might be called
“analytic theories”. In this last section, we work through how to use this framework when
seeking to bring analytic theories to data.

As an example of an analytic theory, we might consider the existence of “Nash equilibria.”
Nash considered a class of settings (“normal form games”) in which each player 𝑖 can choose
an action 𝜎𝑖 from set Σ𝑖 and receives a payoff 𝑢𝑖 that depends on the actions of all players. A
particular game, Γ is the collection of players, action sets, and payoffs.

Nash’s theorem relates to the existence of a collection of strategies with the property that each
strategy would produce the greatest utility for each player, given the strategies of the other
players. Such a collection of strategies is called a Nash equilibrium.

The claim that such a collection of strategies exists in these settings is an analytic claim.
Unless there are errors in the derivation of the result, the claim is true in the sense that the
conclusions follow from the assumptions. There is no evidence that we could go looking for in
the world to assess the claim. The same can be said of the theoretical claims of many formal
models in social sciences; they are theoretical conclusions of the if-then variety (Clarke and
Primo 2012).

For this reason we will refer to theories of this form as “analytic theories.”

When researchers refer to a theory of populism or a theory of democratization however, they
often do not have such analytic theories in mind. Rather they have in mind what might
be called “applied theories” (or perhaps more simply “scientific theories” or “empirical theo-
ries”): general claims about the relations between objects in the world. The distinction here
corresponds to the distinction in Peressini (1999) between “pure mathematical theories” and
“mathematized scientific theories.”

Applied theory, in this sense, is a collection of claims with empirical content: An applied theory
refers to a set of propositions regarding causal relations in the world that might or might not
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hold, and is susceptible to assessment using data. These theories might look formally a lot
like analytic theories, but it is better to think of them as translations at most. The relations
between nodes of an applied theory are a matter of conjecture, not a matter of necessity.7

Though it is not standard practice, formal models produced by game theorists can often be
translated into applied theoretical analogs and then represented using the notation of structural
causal models. Moreover, doing so may be fruitful. Using the approach described above, we
can assess the utility of the applied theory, if not the analytic theory itself.

For two players, for instance, we might imagine a representation of a standard normal form
game as shown in Figure 6.3.

σ1

u1

u2

σ2

Figure 6.3: Formal structure of a normal form game.

The model includes all the primitives of a normal form game: We can read off the number of
players, the strategy sets (the range of the strategy nodes) and the mapping from actions to
utilities. Here the only causal functions are the utility functions. In an analytic theory, these
functions are known. In an applied translation of the theory these are a matter of conjecture:
The functions capture the researchers’ beliefs that actual actions will produce actual payoffs.
So far the model does not capture any claims about behavior or expected behavior.

In contrast to Nash’s theorem regarding the existence of equilibria, a behavioral theory might
claim that in problems that can be represented as normal form games, players indeed play
Nash equilibrium. This is a theory about how people act in the world. We might call it Nash’s
theory.

How might this theory be represented as a causal model? Figure 6.4 provides one representa-
tion.

Erratum: figure captions in this section have been updated, 2025.01.06.

7Peressini (1999) distinguishes between “applied mathematical theories” and “mathematized scientific theories”
on the grounds that not all mathematized theories are an application of a pure theory.
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Γ

σ1

u1

u2

σ2

Figure 6.4: ‘Nash’s theory’: a mapping from game form to outcomes.

Here, player beliefs about the game form (Γ) results in strategy choices by actors. If players
play according to Nash’s theory, the causal functions for the strategy choices are given by the
Nash equilibrium solution itself, with a refinement in case of multiplicity.

This model represents what we expect to happen in a game under Nash’s theory and we can
indeed see if the relations between nodes in the world look like what we expect under the theory.
The relations are nevertheless a matter of conjecture, to be contrasted with the exact claims
on strategy profiles that are produced by an analytic theory that assumes Nash equilibria are
played.

So far, the model does not provide much of an explanation for behavior. A lower level causal
model might help. In Figure 6.5, the game form Γ determines the beliefs about what actions
the other player would make (thus 𝜎𝑒

2 is 1’s belief about 2’s actions). The causal functions for
𝜎𝑒

2 and 𝜎𝑒
1 might, for instance, be the Nash equilibrium solution itself: that is, players expect

other players to play according to the Nash equilibrium (or in the case of multiple equilibria,
a particular equilibrium selected using some refinement). The beliefs, in turn, together with
the game form (which contains 𝑢1, 𝑢2), are what cause the players to select a particular action.
The causal function for 𝜎1 might thus be 𝜎1 = arg max𝜎 𝑢1(𝜎, 𝜎𝑒

2).
This representation implies a set of relations that can be compared against empirical patterns.
Do players indeed hold these beliefs when playing a given game? Are actions indeed consistent
with beliefs in ways specified by the theory? It provides a theory of beliefs and a theory of
individual behavior as well as an explanation for social outcomes.

The model in Figure 6.5 provides a foundation of sorts for Nash’s theory. It suggests that
players play Nash equilibria because they expect others to and they are utility maximizers.
But this is not the only explanation that can be provided; alternatively behavior might line
up with the theory without passing through beliefs at all, as suggested in some accounts from
evolutionary game theory that show how processes might select for behavior that corresponds
to Nash even if agents are unaware of the game they are playing.

143



Γ

σ2
e σ1

u1

u2

σ2 σ1
e

Figure 6.5: Normal form games with best response mappings: actions are a function of expec-
tations of the actions of others.

One might step still further back and ask why would actors form these beliefs, or take these
actions, and answer in terms of assumptions about actor rationality. Figure 6.6, for instance,
is a model in which actor rationality might vary and might influence beliefs about the actions
of others as well as reactions to those beliefs. Fully specified causal functions might specify not
only how actors act when rational but also how they react when they are not. In this sense,
the model in Figure 6.6 both nests Nash’s theory and provides an explanation for why actors
conform to the predictions of the theory.

Γ

σ2
e σ1

u1

u2

σ2 σ1
e

R1 R2

Figure 6.6: Normal form games with variation in player rationality.

In a final elaboration, we can represent a kind of underspecification of Nash’s theory that
makes it difficult to take the theory to data. In the above, we assume that players choose
actions based on expectations that the other player would play the Nash equilibrium—or that
the theory would specify which equilibrium in the case of multiplicity. But it is well known that
Nash’s theory often does not provide a unique solution. This indeterminacy can be captured
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in the causal model as shown in Figure 6.7, where a common shock—labeled 𝜈, and interpreted
as norms—interacts with the game form to determine the expectations of other players.

The causal function for expectations can then allow for the possibility that (i) there is a
particular equilibrium invariably chosen and played by both (ii) or a guarantee that players
are playing one or other equilibrium together but uncertainty over which one is played, or (iii)
the possibility that players are in fact out of sync, with each playing optimal strategies given
beliefs but nevertheless not playing the same equilibria.

Nash’s theory likely corresponds to position (ii). It can be captured by causal functions on
beliefs given 𝜈 but the theory does not specify 𝜈, in the same way that it does not specify Γ.

Γ

σ2
e σ1

u1

u2

σ2 σ1
e

R1 R2

ν

Figure 6.7: A normal form game with a representation of equilibrium selection norms.

We highlight three points from this discussion.

First, the discussion highlights that thinking of theory as causal models does not force a sharp
move away from abstract analytic theories; close analogs of these can often be incorporated in
the same framework. This is true even for equilibrium analysis that seems to involve a kind
of simultaneity at first blush.

Second, the discussion highlights how the causal modeling framework can make demands for
specificity from formal theories. For instance, specifying a functional relation from game form
to actions requires a specification of a selection criterion in the event of multiple equilibria.
Including agent rationality as a justification for the theory invites a specification for what
would happen absent rationality.

Third, the example shows a way of building a bridge from pure theory to empirical claims.
One can think of Nash’s theory as an entirely data-free set of claims. When translated into
an applied theory—a set of propositions about the ways actual players might behave—and
represented as a causal model, we are on a path to being able to use data to refine the theory.
Thus, we might begin with a formal specification like that in Figure 6.7 but with initial
uncertainty about player rationality, optimizing behavior, and equilibrium selection. This
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theory nests Nash but does not presume the theory to be a valid description of processes in
the world. Combined with data, however, we shift to a more refined theory that might select
Nash from the lower level model.

Finally, we can apply the ideas of Section 6.2 to formal theories and ask: Is the theory useful?
For instance, does data on player rationality help us better understand the relationship between
game structure and welfare?
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Part III

II Model-based Causal Inference
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7 Process Tracing with Causal Models

Chapter summary

We show how process tracing can be implemented within a causal-model framework. The
chapter outlines a model-based procedure for drawing case-level inferences from within-
case evidence. We also show how a key result from the causal-models literature provides
a condition for when the observation of a node in a causal model (a “clue”) may be (or
certainly will not be) informative and we extract a set of implications for process-tracing
strategies.

We now show how we can use causal models to address the kinds of problems of causal inference
that social scientists frequently grapple with. We begin by demonstrating how we can use
causal models to conduct confirmatory process tracing.

Going forward, we conceptualize process tracing somewhat more broadly than some previous
treatments. Scholars have sometimes defined the method in terms of the parts of a causal
system from which evidence is drawn or in terms of the kinds of questions being asked. For
instance, George and Bennett (2005) (p. 6) define process tracing, in part, as involving the use
of evidence on “the sequence and values of the intervening variables” in a causal chain, while
Bennett and Checkel (2015a) (p. 7) specify the method as one undertaken “for the purposes of
either developing or testing hypotheses about causal mechanisms that might causally explain”
a case.

We take a slightly more ecumenical approach to thinking about the nature of the evidence that
may be deployed or the inferential purposes being pursued in process tracing. We consider
process tracing to be an approach that seeks to draw causal inferences about a single case
using data from that case. The data used may be evidence on intervening steps, on features of
context, or on any other potentially informative part of a causal system. Moreover, the causal
question that one seeks to answer may be of any kind: whether about the cause of an outcome,
the mechanism (or pathway) through which an effect unfolds, or any other query of interest
to the analyst, as long as it is a question about the case at hand.

We deal in this chapter with confirmatory process tracing in the sense that our focus is on how
to draw causal inferences given a set of background beliefs about how the world works, rather
than how to inductively derive theoretical insights from the evidence. We note that other parts
of the book — in particular, our treatments of population-level and mixed-data inference in
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Chapter 9, of model-justification in Chapter 15, and of model-evaluation in Chapter 16—show
how we can learn about theory from the data within a causal-model framework.

Our purpose in this chapter is to show how process tracing, defined in this manner, can be
grounded in a causal model and implemented within a causal-model framework. In a nutshell,
the procedure we describe here involves the use of observable nodes on a causal graph to assess
the value of one or more unobserved nodes on a causal graph that are informative for our causal
query.

There are a number of distinctive advantages to grounding process tracing in a a causal model.
First, process tracing from a model maximizes analytic transparency: It allows us to be fully
explicit about the background beliefs informing our inferences, about the question we are ask-
ing, and about how precisely our answers follow from our prior beliefs and the new evidence
that we are assessing. Research audiences and other scholars can then engage with and eval-
uate our inferences in ways uniquely enabled by formalization: They can scrutinize, call into
question, and test for sensitivity to the model that we start with, the way we define our query,
or the analytic steps we take upon observing the evidence. The approach also readily allows
for the updating of inferences as additional case-level observations are brought to the table.

Second, grounding process tracing in a model enforces logical consistency on the set of beliefs
entering into the analysis—such as between our priors on a causal question and our beliefs
about the probative value of evidence—since all beliefs are derived from the same underlying
model.

Third, as we show in this chapter and later in Chapter 12, embedding process tracing in a
causal model offers a tool for making research design choices: It allows us to derive expectations
about the kinds of new evidence that are potentially informative for our query, those that are
likely to be most informative given what we have already observed, and the optimal sequence
in which to search for within-case clues.

Finally, as we elaborate in Chapter 9, process tracing with a causal model opens an opportunity
to integrate within-case and cross-case strategies of causal inference, allowing our inferences
about individual cases to be informed by patterns observed across a larger set of cases.

7.1 The Intuition

When we undertake process tracing, we seek to answer a causal question about a given case.
The key insight driving our approach is that the inference about a causal question for a case
is a claim about which causal types (collections of nodal types) are both likely ex ante (given
prior knowledge) and consistent with the data.1

1This differs from the task for mixed methods research that we will address in Chapter 9. There we will
address questions about the distribution of causal types in populations.
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The question of interest can be about any number of case-level causal features, including
questions about a case-level causal effect, the pathway through which an effect operates, an
actual cause, or causal attribution. We use observations from the case itself to address this
query. We do so via a procedure in which we first encode prior knowledge in the form of a
causal model, collect data on some nodes in the model from the case at hand, ask which causal
possibilities (causal types) permitted by the model are consistent with the data, and then map
those causal possibilities onto the specific causal query we seek to answer.

Given a causal model, we form posteriors over queries as follows:

1. Specify all possible causal types for a model. A causal type, recall, is a particular
combination of nodal types for all nodes in a unit. That is, a single causal type specifies
both a specific set of values of all exogenous variables in a model and the values that
all endogenous variables would potentially take on for all possible values of the other
endogenous variables. For a simple, binary 𝑋 → 𝑌 model, the number of possible causal
types will be 8; that is, 2 (the number of possible values 𝑋, the root node, can take on)
times 4 (the number of possible nodal types for 𝑌 , the endogenous node). To illustrate,
three of these causal types would be (writing them out here, rather than using our usual
𝜃 notation):

• Type 1: (𝑋 = 1) and (𝑌 = 1 if 𝑋 = 1, 𝑌 = 0 if 𝑋 = 0).
• Type 2: (𝑋 = 0) and (𝑌 = 1 if 𝑋 = 1, 𝑌 = 0 if 𝑋 = 0).
• Type 3: (𝑋 = 1) and (𝑌 = 1 if 𝑋 = 1, 𝑌 = 1 if 𝑋 = 0).

Whatever the model, we generate a complete set of all possible causal types.

2. Specify priors over causal types. We report how likely we think it is, ex ante, that a
given unit is of a particular causal type. It is sometimes useful to conceive of the case at
hand as having been randomly drawn from a broader population; thus, our prior beliefs
about the case are equivalent to our beliefs about how common different causal types are
in that population. In the simplest situation, we might place 0 weight on some causal
types (those that are ruled out by background theory, for example) and equal weight on
all others. More generally, we assign a lower probability to those causal types that we
believe are relatively less common in the population and a higher probability to those
causal types that we think are more common. Note that, in this critical step, we are
mobilizing our population-level beliefs to allow us to draw case-level inferences.

3. Specify the query in terms of causal types. For instance, for the simple 𝑋 → 𝑌
model, the query “𝑌 responds positively to 𝑋” can be thought of as a collection of causal
types: Q={Type 1, Type 2}, above.

4. Once we observe the data, specify the set of causal types that are consistent
with those data. For instance, if we observe 𝑋 = 1, 𝑌 = 1 we might specify the
data-consistent set as {Type 1, Type 3}, excluding Type 2, with which these data are
inconsistent.
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5. Update. Updating is then done by adding up the prior probabilities on all causal types
that are consistent with both the data and the query, and dividing this sum by the sum
of prior probabilities on all causal types that are consistent with the data (whether or
not they are consistent with the query).

Types consistent
with query

Types consistent
with priors

Types consistent
with data

ΘUniverse of all
causal types

A

B

C

Figure 7.1: Logic of simple updating on arbitrary queries.

This process is represented graphically in Figure 7.1, where we can think of probabilities as
proportionate to areas. Our causal model defines the causal-type space. We then proceed by
a process of elimination. Only some of the causal types in the model are consistent with prior
knowledge. Only some are consistent with the data that we observe. Finally, any query itself
maps onto a subset of the possible causal types. The causal types that remain in contention
once we have observed the evidence are those at the intersection of consistency with priors
and consistency with the data. 𝐴 represents those types that are also consistent with a given
answer to the query (say, 𝑋 has a positive effect on 𝑌 ).

Thus, our belief about the query before we have seen the data is the probability of all causal
types consistent with our priors and with the query (𝐴+𝐵), as a proportion of the probability
of all types consistent with our priors. Once we have seen the data, we have reduced the
permissible types to 𝐴 + 𝐶. Our posterior belief on the query is, then, the probability of those
remaining types that are also consistent with the query, as a share of the probability of all
remaining types, or 𝐴/(𝐴 + 𝐶).
We now turn to a formalization of these ideas.
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7.2 A Formalization of the General Approach

The general approach to inference draws on the components we outlined in Chapters 2 to
4: causal models, queries, and priors. Coupled with data, these elements provide grounds
for causal inferences. We continue to focus on a situation with binary variables, though we
describe later how this can be extended. We walk through the procedure for simple models,
though note that the approach outlined here can be applied to any causal model with discrete
variables and to any queries defined over the model.

The process tracing procedure operates as follows.

7.2.1 The Model

First we need a model.

A DAG

We begin with a DAG, or graphical causal model. As discussed in Chapter 2, a DAG identifies
a set of variables and describes the parent-child relations between them, indicating for each
variable which other variables are its direct (possible) causes. These relationship, in turn, tell
us which (non-descendant) variables a given variable is not independent of given the other
variables in the model.

Nodal Types

Once we have specified a DAG, we can determine the full set of possible nodal types: The
types defining the value that a variable will take on given the values of its parents, which we
have denoted with 𝜃𝑗 values for node 𝑗, as in 𝜃𝑋

0 or 𝜃𝑌
10. At each node, the range and number

of possible nodal types is defined by the number of parents that that node has and the number
of values the variables can take on. For instance, assuming all variables to be binary, if 𝑌 has
parents 𝑋 and 𝑍, then there are 2(22) = 16) possible causal types for the 𝑌 node.

Causal types

From the set of all possible nodal types for a DAG, we get the set of all possible causal types
by simply elaborating all possible permutations of nodal types.

7.2.2 Priors

Our background beliefs about a causal domain will usually consist of more than just beliefs
about which variables have causal connections; they will also typically contain beliefs about
what kinds of effects operate between variables. That is, they will contain beliefs about which
types are possible or, more generally, are more or less common in the world. We express
these beliefs over causal effects as probability distributions over the nodal types. Generally,
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beliefs about causal types are implied by beliefs about nodal types. In cases with unobserved
confounding, beliefs are defined over the joint distributions of nodal types.

For process tracing, our beliefs over nodal type 𝜃𝑗, say, simply capture the subjective probability
we have that the type takes on different values. We do not need to defend this belief to use
the machinery. We use 𝜆𝑗

𝑥 to denote the probability that 𝜃𝑗 = 𝜃𝑗
𝑥. Often however it helps

with intuition to think of a given case of interest—the one we are studying and seek to learn
about—as being drawn at random from a population and to think about our beliefs for the
single case as stemming from our beliefs about the population from which it is drawn. In this
sense, 𝜆𝑗

𝑥 can be thought of as the share of cases in that population that we believe to be of
type 𝜃𝑗

𝑥. So, for instance, our prior belief about the probability that inequality has a positive
effect on democratization in Mexico in 1999 is our belief about how commonly inequality has a
positive effect on democratization in the population of cases that are “like” Mexico in 1999.2

Vector 𝜆𝑗 is simply a set of numbers for each possible nodal type, with all numbers non negative
and summing to 1. So, for instance, 𝜆𝑌 for our current example would be a vector with four
values, each of which expresses a probability on one of the four nodal types at 𝑌 . So we might
have 𝜆𝑌

01 = 0.1, 𝜆𝑌
11 = 0.05, and so on—with the 𝜆𝑌 values summing to 1 because these values

are defined over the full set of possible nodal types for 𝑌 . For the purposes of this chapter, we
take 𝜆 as given—as the set of population-level beliefs we are operating with. In later chapters
however, when we move beyond single cases, 𝜆 becomes quantity of interest, a parameter we
want to learn about from the data.

Consider now beliefs over causal types. Let’s start with a situation in which we assume that
the nodal types are independent of one another. We can think of this as a situation in which
there is no confounding that is not captured in the graph—no variable missing from the model
that is a common ancestor of multiple nodes in the model. In this situation, our beliefs over
causal types are simply the product of our beliefs over the component nodal types (since the
joint probability of independent events is simply the product of their individual probabilities).
For instance, one causal type might be “a unit in which 𝑋 = 1 and in which 𝑌 = 1 no
matter what value 𝑋 takes.” In this case, the probability that a case is of this causal type is
Pr(𝜃𝑋 = 𝜃𝑋

1 ) Pr(𝜃𝑌 = 𝜃𝑌
11) = 𝜆𝑋

1 𝜆𝑌
11.

The simplest way in which we can express beliefs about the differential probabilities of different
causal possibilities is by eliminating nodal types that we do not believe to be possible—setting
their 𝜆 values to 0. Suppose, for instance, that we are examining the effect of ethnic diversity
on civil war in a case. We might not know whether ethnic diversity causes civil war in this
case, but we might have sufficient background knowledge to believe that ethnic diversity never
has a negative effect on civil war: It never prevents a civil war from happening that would
have happened in the absence of ethnic diversity. We would thus want to set the 𝜆 value for
a negative causal effect to 0. If we then know nothing about the relative frequencies of the

2The reference population for a case is defined based on whatever we already know about the case. Thus, for
instance, if we already know that the case has 𝑌 = 1 before we begin process tracing, then the relevant
population for the formation of prior beliefs is all cases in which 𝑌 = 1.
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three remaining nodal types for 𝑌 – a positive effect, a null effect with civil war never going
to happen, and a null effect with civil war never going to happen – we may (following the
principle of indifference) assign an equal weight of one-third to each of them.

In a situation of unobserved confounding, our beliefs over causal types are still well defined,
though they are no longer the simple product of beliefs over nodal types. In this situation we
need to describe a joint distribution over nodal types. In practice we can do this by specifying
a probability for one nodal type and a conditional probability for another. Let us imagine for
instance, in a simple 𝑋 → 𝑌 model, that we believe that some unobserved factor both affects
both the likelihood of 𝑋 = 1 and also 𝑋’s effect on 𝑌 : Maybe, for instance, 𝑋 is more likely to
be assigned to 1 where 𝑋 has a positive effect. This is the same as saying that the probability
distributions over 𝜃𝑋 and 𝜃𝑌 are not independent. Now the probability of any combination of
𝜃𝑋 and 𝜃𝑌 can be calculated using the joint probability formula, Pr(𝐴, 𝐵) = Pr(𝐴) Pr(𝐵|𝐴).3
Thus, for instance, Pr(𝜃𝑌 = 𝜃𝑌

01, 𝜃𝑋 = 𝜃𝑋
1 ) = Pr(𝜃𝑌 = 𝜃𝑌

01) Pr(𝜃𝑋 = 𝜃𝑋
1 |𝜃𝑌 = 𝜃𝑌

01). To form
priors over causal types in this situation, we need to posit beliefs about a set of more complex,
conditional probabilities for 𝑋’s type. Specifically, we need to posit, for those cases with a
positive effect of 𝑋 on 𝑌 , what are the chances a case is “assigned” to 𝑋 = 1; for those cases
with a negative effect, what are the chances a case is “assigned” to 𝑋 = 1; and similarly for
other nodal types.

In practice, we represent Pr(𝜃𝑋
1 , 𝜃𝑌

01) = Pr(𝜃𝑋
1 ) Pr(𝜃𝑌

01|𝜃𝑋
1 ) using 𝜆𝑋

1 , 𝜆𝑌 |𝜃𝑋
1

01 . The notation is
awkward but the key thing is that we have a well defined set of beliefs that we need to take
into account to assess the probability of different causal types.

7.2.3 Possible Data Types

A data type is a particular pattern of data that we could potentially observe for a given case.
More specifically, a data type is a set of values, one for each node in a model. For instance, in
an 𝑋 → 𝑌 ← 𝑍 model, (X=1, Z=0, Y=0) would be one data type; (X=0, Z=0, Y=1) another.
We use X1Z0Y0, or X0Z0Y1 as shorthand for such data types.

Importantly, absent intervention, each possible causal type maps deterministically into a single
data type. One intuitive way to think about why this is the case is that a causal type tells us (a)
the values to which all root variables in a model are assigned and (b) how all other endogenous
variables respond to their parents. Given these two components, only one set of node values is
possible for a given causal type. For example, causal type 𝜃 = (𝜃𝑋 = 𝜃𝑋

1 , 𝜃𝑍 = 𝜃𝑍
0 , 𝜃𝑌 = 𝜃𝑌

0100)
implies data 𝑋 = 1, 𝑍 = 0, 𝑌 = 1 (the second digit in the subscript for 𝜃𝑌 refers to the
potential outcome for 𝑌 when 𝑋 = 1 and 𝑍 = 0). Absent intervention, there is no other set
of data that can be generated by this causal type.

3In words, the probability of 𝐴 and 𝐵 occurring is equal to the probability of 𝐴 occurring times the probability
of 𝐵 occurring given that 𝐴 occurs.
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Equally importantly, however, the mapping from causal types to data types is not one-to-one.
More than one causal type can generate the same case-level data pattern. For instance, the
causal type 𝜃 = (𝜃𝑋 = 𝜃𝑋

1 , 𝜃𝑍 = 𝜃𝑍
0 , 𝜃𝑌 = 𝜃𝑌

1101) will also generate the data type, 𝑋 = 1, 𝑍 =
0, 𝑌 = 1. Thus, observing this data type leaves us with ambiguity about the causal type by
which it was generated.

We can use an ambiguities matrix to summarize the mapping between causal types and data
types. There is a row for each causal type and a column for each data type. An entry of 1 in
a given cell indicates that the causal type generates the data type. Each row has a single 1
but each column can have many 1s—an indicator of the ambiguity we have about causal types
when we observe a data type.

We illustrate with an ambiguities matrix for a simple 𝑋 → 𝑌 model in Table 7.1. In the last
column, we provide illustrative prior probabilities that could be placed on each causal type.
As discussed above, each causal-type probability would be derived from beliefs about the 𝜆𝑗

probabilities for the component nodal types. Note how we can read the ambiguities off of
the matrix. For instance, if we observe 𝑋 = 1, 𝑌 = 0 in a case, we face an ambiguity about
whether the case’s causal type is 𝜃𝑋

1 , 𝜃𝑌
00 or 𝜃𝑋

1 , 𝜃𝑌
10: that is, about whether 𝑋 has a negative

effect on 𝑌 in this case or 𝑌 would be 0 in this case regardless of 𝑋’s value.

Table 7.1: An ambiguities matrix, mapping from data types to causal types for a simple 𝑋 → 𝑌
model.

Data types → X0Y0 X1Y0 X0Y1 X1Y1 Priors
Causal types ↓

𝜃𝑋
0 , 𝜃𝑌

00 1 0 0 0 0.1
𝜃𝑋

1 , 𝜃𝑌
00 0 1 0 0 0.1

𝜃𝑋
0 , 𝜃𝑌

10 0 0 1 0 0.1
𝜃𝑋

1 , 𝜃𝑌
10 0 1 0 0 0.1

𝜃𝑋
0 , 𝜃𝑌

01 1 0 0 0 0.2
𝜃𝑋

1 , 𝜃𝑌
01 0 0 0 1 0.2

𝜃𝑋
0 , 𝜃𝑌

11 0 0 1 0 0.1
𝜃𝑋

1 , 𝜃𝑌
11 0 0 0 1 0.1

As models get more complex, the numbers of causal and data types multiply, though generally
the number of causal types increases faster than the number of data types. For a simple
mediation model (𝑋 → 𝑀 → 𝑌 ), there are 23 = 8 data types—possible combinations of
values for 𝑋, 𝑀, 𝑌 – but 2 × 4 × 4 causal types.

The ambiguities matrix tells us which causal types are consistent with the data we observe
and, in doing so, shapes our inferences. Table 7.2 shows a portion of the ambiguities matrix
for the 𝑋 → 𝑀 → 𝑌 model, with priors on causal types appended in the final column. In
this model if we observe 𝑋 = 1, 𝑀 = 0, 𝑌 = 0, for instance, we have ambiguities over causal

155



types. These data tell us that 𝜃𝑋 = 𝜃𝑋
1 . But they do not tell us whether 𝑀 ’s type is such that

𝑋 has a negative effect on 𝑀 (𝜃𝑀
10) or 𝑋 has no effect with 𝑀 fixed at 0 (𝜃𝑀

00). Similarly, we
do not know whether 𝑀 has a positive effect on 𝑌 (𝜃𝑌

01) or no effect with 𝑌 fixed at 0 (𝜃𝑌
00).

This leaves four combinations of nodal types—four causal types—that are consistent with the
data. These types are picked out by the ambiguities matrix (two of these four can be seen in
the second column of the excerpt of the ambiguities matrix displayed in Table 7.2.

Table 7.2: Excerpt from the ambiguities matrix for a simple mediation model. Rows are causal
types, columns are data types. Last column shows possible priors over rows.

Data types → X0M0Y0 X1M0Y0 X0M1Y0 X1M1Y0 X0M0Y1 X1M0Y1 prior
Causal types

↓
𝜃𝑋

0 , 𝜃𝑀
00, 𝜃𝑌

00 1 0 0 0 0 0 0.02
𝜃𝑋

1 , 𝜃𝑀
00, 𝜃𝑌

00 0 1 0 0 0 0 0.02
𝜃𝑋

0 , 𝜃𝑀
10, 𝜃𝑌

00 0 0 1 0 0 0 0.02
𝜃𝑋

1 , 𝜃𝑀
10, 𝜃𝑌

00 0 1 0 0 0 0 0.02
𝜃𝑋

0 , 𝜃𝑀
01, 𝜃𝑌

00 1 0 0 0 0 0 0.04
𝜃𝑋

1 , 𝜃𝑀
01, 𝜃𝑌

00 0 0 0 1 0 0 0.04
𝜃𝑋

0 , 𝜃𝑀
11, 𝜃𝑌

00 0 0 1 0 0 0 0.02
𝜃𝑋

1 , 𝜃𝑀
11, 𝜃𝑌

00 0 0 0 1 0 0 0.02
𝜃𝑋

0 , 𝜃𝑀
00, 𝜃𝑌

10 0 0 0 0 1 0 0.02
𝜃𝑋

1 , 𝜃𝑀
00, 𝜃𝑌

10 0 0 0 0 0 1 0.02
𝜃𝑋

0 , 𝜃𝑀
10, 𝜃𝑌

10 0 0 1 0 0 0 0.02
𝜃𝑋

1 , 𝜃𝑀
10, 𝜃𝑌

10 0 0 0 0 0 1 0.02
𝜃𝑋

0 , 𝜃𝑀
01, 𝜃𝑌

10 0 0 0 0 1 0 0.04
𝜃𝑋

1 , 𝜃𝑀
01, 𝜃𝑌

10 0 0 0 1 0 0 0.04
𝜃𝑋

0 , 𝜃𝑀
11, 𝜃𝑌

10 0 0 1 0 0 0 0.02
𝜃𝑋

1 , 𝜃𝑀
11, 𝜃𝑌

10 0 0 0 1 0 0 0.02

7.2.4 Updating on Types Given the Data

Once we observe actual data in a case, we can then update on the probabilities assigned to
each causal type. The logic is simple. When we observe a set of data from a case, we place 0
probability on all causal types that could not have produced these data; we then scale up the
probabilities on all causal types that could have.

As a simple example, return to our 𝑋 → 𝑌 model with equal prior weights (1/8) on each
of the eight possible causal types, as in Table 7.1. Now suppose that we observe the data
𝑋 = 1, 𝑌 = 1, that is, data type 𝑋1𝑌 1. These data are consistent with some causal types
but not others. Only two causal types are consistent with the data: 𝜃𝑋

1 , 𝜃𝑌
01 and 𝜃𝑋

1 , 𝜃𝑌
11. We

therefore put 0 weight on all other causal types and scale up the remaining probabilities so that
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they sum to 1 (preserving the ratio between them). The result gives posterior probabilities on
the causal types. We display an “updated” ambiguities matrix, with excluded data types and
causal types removed, in Table 7.3.

Before we see any data on the case at hand, then, we believe (based on our beliefs about the
population to which the case belongs) that there is a 1/8 probability that the case is one in
which 𝑋 is assigned to 1 and has a positive effect on 𝑌 ; and 1/8 probability that it’s a case
in which 𝑋 gets assigned to 1 and has no effect on 𝑌 (and so 𝑌 is 1 regardless of 𝑋). Seeing
the 𝑋 = 1, 𝑌 = 1 data, we now believe that there is a 1/2 probability that the case is of the
former type, and a 1/2 probability that it is of the latter type. Had our prior beliefs on types
been different from each other, the posterior beliefs would have scaled up accordingly.

Table 7.3: Ambiguities in an 𝑋 → 𝑌 model after observing 𝑋 = 1, 𝑌 = 1 in a case.

Data types → X1Y1 Priors Posteriors
Causal types ↓

𝜃𝑋
1 , 𝜃𝑌

01 1 1/8 1/2
𝜃𝑋

1 , 𝜃𝑌
11 1 1/8 1/2

We now walk through how this works for the more complex 𝑋 → 𝑀 → 𝑌 model, and the
ambiguities matrix in Table 7.2. If we observe the data 𝑋 = 1, 𝑀 = 0, 𝑌 = 0, for instance, this
exercise would yield the updated ambiguities matrix in Table 7.4. Here, we have eliminated
all rows (causal types) with a 0 in the relevant data-type column (𝑋1𝑀0𝑌 0) and formed the
posteriors by scaling up the priors in the retained rows.

Table 7.4: An updated version of the ambiguities matrix in Table 7.2, after observing 𝑋 =
1, 𝑀 = 0, 𝑌 = 0 in a case.

Data types → X1M0Y0 Priors Posteriors
Causal types ↓

𝜃𝑋
1 , 𝜃𝑀

00, 𝜃𝑌
00 1 0.02 0.1667

𝜃𝑋
1 , 𝜃𝑀

10, 𝜃𝑌
00 1 0.02 0.1667

𝜃𝑋
1 , 𝜃𝑀

00, 𝜃𝑌
01 1 0.04 0.3333

𝜃𝑋
1 , 𝜃𝑀

10, 𝜃𝑌
01 1 0.04 0.3333

A notable feature of the logic of single-case process tracing is that the relative probabilities on
the retained causal types never change. If we start out believing that causal type 𝐴 is twice
as likely as causal type 𝐵, and both 𝐴 and 𝐵 are retained once we see the data, then 𝐴 will
be twice as likely as 𝐵 in our posteriors. All updating occurs by eliminating causal types from
consideration and zeroing in on those that remain.
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A similar logic applies if partial data are observed: that is, if we do not collect data for all
nodes in the model. The one difference is that, now, rather than reducing to one column we
entertain the possibility of any data type consistent with the observed data. In general, more
than one data type will be consistent with partial data. For instance, suppose that we observe
𝑋 = 1, 𝑌 = 0 but do not observe 𝑀 ’s value. These are data that are consistent with both the
data type 𝑋1𝑀0𝑌 0 and the data type 𝑋1𝑀1𝑌 0 (since the unobserved 𝑀 could be either 0
or 1). We thus retain both of these data-type columns as well as all causal types consistent
with either of these data types. This gives the updated ambiguities matrix in Table 7.5. We
note that, with these partial data, we are not able to update as strongly. For instance, for the
causal type 𝜃𝑋

1 , 𝜃𝑀
00, 𝜃𝑌

00, instead of updating to a posterior probability of 0.1667, we update
to a posterior of only 0.0833—because there is a larger set of causal types with which these
partial data are consistent.

Table 7.5: An updated version of the ambiguities matrix in Table 7.2, after observing partial
data in case: 𝑋 = 1, 𝑌 = 0, with 𝑀 unobserved.

Data types → X1M0Y0 X1M1Y0 Priors Posteriors
Causal types ↓

𝜃𝑋
1 , 𝜃𝑀

00, 𝜃𝑌
00 1 0 0.02 0.0833

𝜃𝑋
1 , 𝜃𝑀

10, 𝜃𝑌
00 1 0 0.02 0.0833

𝜃𝑋
1 , 𝜃𝑀

01, 𝜃𝑌
00 0 1 0.04 0.1667

𝜃𝑋
1 , 𝜃𝑀

11, 𝜃𝑌
00 0 1 0.02 0.0833

𝜃𝑋
1 , 𝜃𝑀

01, 𝜃𝑌
10 0 1 0.04 0.1667

𝜃𝑋
1 , 𝜃𝑀

11, 𝜃𝑌
10 0 1 0.02 0.0833

𝜃𝑋
1 , 𝜃𝑀

00, 𝜃𝑌
01 1 0 0.04 0.1667

𝜃𝑋
1 , 𝜃𝑀

10, 𝜃𝑌
01 1 0 0.04 0.1667

7.2.5 Updating on Queries

We now have a posterior probability for each causal type for the case at hand. The causal
question we are interested in answering, our query, may not be about causal types per se.
In general, causal query can be defined as a combination of causal types, as described in
Chapter 4.

For instance, suppose we are working with the model 𝑋 → 𝑀 → 𝑌 ; and that our question is,
“Did 𝑋 = 1 cause 𝑌 = 1?”. This question is asking both:

1. Does 𝑋 = 1 in this case?

2. Does 𝑋 have a positive effect on 𝑌 in this case?

The causal types that qualify are those, and only those, in which the answer to both is “yes.”
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Meeting condition (1) requires that 𝜃𝑋 = 𝜃𝑋
1 .

Meeting condition (2) requires that 𝜃𝑀 and 𝜃𝑌 are such that 𝑋 has an effect on 𝑀 that yields
a positive effect of 𝑋 on 𝑌 . This could occur via a positive 𝑋 → 𝑀 effect linked to a positive
𝑀 → 𝑌 effect or via a negative 𝑋 → 𝑀 effect linked to a negative 𝑀 → 𝑌 effect.

Thus, the qualifying causal types in this model are:

• 𝜃𝑋
1 , 𝜃𝑀

01, 𝜃𝑌
01

• 𝜃𝑋
1 , 𝜃𝑀

10, 𝜃𝑌
10

Our prior on the query—what we believe before we collect data on the case at hand—is given
simply by summing up the prior probabilities on each of the causal types that correspond
to the query. Note that we must calculate the prior from the full ambiguities matrix, before
excluding types for inconsistency with the data. Returning to the full ambiguities matrix in
Table 7.2, we see that the priors on these two types (given the population parameters assumed
there) are 0.08 and 0.02, respectively, giving a prior for the query of 0.1.

The posterior on any query is, likewise, given by summing up the posterior probabilities on
each of the causal types that correspond to the query, drawing of course from the updated
ambiguities matrix. For instance, if we observe the data 𝑋 = 1, 𝑀 = 1, 𝑌 = 1, we update to
the ambiguities matrix in Table 7.6. Our posterior on the query, “Did 𝑋 = 1 cause 𝑌 = 1?”
is the sum of the posteriors on the above two causal types. Since 𝜃𝑋

1 , 𝜃𝑀
10, 𝜃𝑌

10 is excluded by
the data, this just leaves the posterior on 𝜃𝑋

1 , 𝜃𝑀
01, 𝜃𝑌

01, 0.4444, which is the posterior belief on
our query.

If we observe only the partial data, 𝑋 = 1, 𝑌 = 1, then we update to the ambiguities matrix
in Table 7.7. Now both causal types satisfying the query are included, and we sum their
posteriors to get the posterior on the query: 0.08 + 0.31 = 0.39.

Table 7.6: An updated version of the ambiguities matrix in Table 7.2, after observing 𝑋 =
1, 𝑀 = 1, 𝑌 = 1 in a case.

Data types → X1M1Y1 Priors Posteriors
Causal types ↓

𝜃𝑋
1 , 𝜃𝑀

01, 𝜃𝑌
01 1 0.08 0.4444

𝜃𝑋
1 , 𝜃𝑀

11, 𝜃𝑌
01 1 0.04 0.2222

𝜃𝑋
1 , 𝜃𝑀

01, 𝜃𝑌
11 1 0.04 0.2222

𝜃𝑋
1 , 𝜃𝑀

11, 𝜃𝑌
11 1 0.02 0.1111
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Table 7.7: An updated version of the ambiguities matrix in Table 7.2, after observing partial
data in case: 𝑋 = 1, 𝑌 = 0, with 𝑀 unobserved.

Data types → X1M0Y0 X1M1Y0 Priors Posteriors
Causal types ↓

𝜃𝑋
1 , 𝜃𝑀

00, 𝜃𝑌
10 1 0 0.02 0.0769

𝜃𝑋
1 , 𝜃𝑀

10, 𝜃𝑌
10 1 0 0.02 0.0769

𝜃𝑋
1 , 𝜃𝑀

01, 𝜃𝑌
01 0 1 0.08 0.3077

𝜃𝑋
1 , 𝜃𝑀

11, 𝜃𝑌
01 0 1 0.04 0.1538

𝜃𝑋
1 , 𝜃𝑀

00, 𝜃𝑌
11 0 1 0.02 0.0769

𝜃𝑋
1 , 𝜃𝑀

10, 𝜃𝑌
11 0 1 0.02 0.0769

𝜃𝑋
1 , 𝜃𝑀

01, 𝜃𝑌
11 1 0 0.04 0.1538

𝜃𝑋
1 , 𝜃𝑀

11, 𝜃𝑌
11 1 0 0.02 0.0769

For more complex models and queries, it can be more difficult to eyeball the correspond-
ing causal types. In practice, therefore, we use the get_query_types function in the
CausalQueries package to do this for us.

7.3 Mapping from Models to Classic Qualitative Tests

The approach we have elaborated here appears different from that described in the literature
on process-tracing tests—such as Collier (2011), Bennett (2008), or Humphreys and Jacobs
(2015)—in which one seeks specific evidence that is directly informative about causal propo-
sitions: “clues” that arise with different probabilities if one proposition or another is true.
In fact, however, the approaches are deeply connected. Specifically, we can think of causal
models as providing a justification for the probative value that researchers assign to clues in
the classic approach. One can use the predictive probabilities for queries from a model as the
prior for the query before starting process tracing; and use the predictive probability of data
given a query as likelihoods. In doing so the priors and likelihoods are justified by the model
(which of course implies that challenges to the model imply challenges to these quantities).

To see this, let’s write down the probability of observing a given clue conditional on a unit’s
causal type using the 𝜙 notation from Humphreys and Jacobs (2015). Here, 𝜙𝑗𝑥 refers to the
probability of observing a clue, 𝐾, in a case of type 𝑗 when 𝑋 = 𝑥. Assuming an 𝑋 → 𝐾 → 𝑌
model and a prior distribution over the lower level causal types (the 𝜆’s), we can derive, for
an 𝑋 = 1 case, the probability of seeing the clue if the case is of type 𝑏 (positive effect) or of
type 𝑑 (no effect, and 𝑌 always 1):
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𝜙𝑏1 = 𝜆𝐾
01𝜆𝑌

01
𝜆𝐾

01𝜆𝑌
01 + 𝜆𝐾

10𝜆𝑌
10

𝜙𝑑1 = 𝜆𝑌
11(𝜆𝐾

01 + 𝜆𝐾
11) + 𝜆𝐾

11𝜆𝑌
01

𝜆𝑌
11 + 𝜆𝐾

00𝜆𝑌
10 + 𝜆𝐾

11𝜆𝑌
01

(7.1)

These quantities allow for easy mapping between our prior beliefs about our causal query—as
expressed in the lower level model—and the classic process-tracing tests in Van Evera (1997).
Figure 7.2 illustrates this mapping. In each panel, we manipulate a prior for one or more of
the lower level causal effects, keeping all other priors flat, relative to ech other, and we see how
probative value changes. As the curves for 𝜙𝑏 and 𝜙𝑑 diverge, probative value is increasing
since there is an increasing difference between the probability of seeing the clue if 𝑋 has a
positive effect on 𝑌 and the probability of seeing the clue if 𝑋 has no effect.

In the left panel, we see that as we place a lower prior probability on 𝐾’s being negatively
affected by 𝑋, (that is as we move left),4 seeking 𝐾 = 1 increasingly takes on the quality
of a hoop test for 𝑋’s having a positive effect on 𝑌 . The clue, that is, increasingly becomes
something we must see if 𝑋 positively affects 𝑌 , with the clue remaining moderately probable
if there is no effect. Why? The less likely we believe it is that 𝐾 = 0 was caused by 𝑋 = 1,
the less consistent the observation of 𝐾 = 0 is with 𝑋 having a positive causal effect on 𝑌
via 𝐾 (since, to have such an effect, if 𝑋 = 1 and 𝐾 = 0, would precisely have to mean that
𝑋 = 1 caused 𝐾 = 0).

In the second graph, we simultaneously change the prior probabilities of zero effects at both
stages in the sequence: of 𝐾 and 𝑌 being 1 regardless of the values of 𝑋 and 𝐾, respectively.5
We see here that, as the probabilities of zero effects jointly diminish (again, moving left),
seeking 𝐾 = 1 increasingly becomes a smoking-gun test for a positive effect of 𝑋 on 𝑌 : the
probability of seeing the clue if the case is a 𝑑 type diminishes. The reason is that, as zero
effects at the lower level become less likely, it becomes increasingly unlikely that 𝐾 = 1 could
have occurred without a positive effect of 𝑋 on 𝐾, and that 𝑌 = 1 could have occurred (given
that we have seen 𝐾 = 1) without a positive effect of 𝐾 on 𝑌 .

In sum, when we undertake process tracing with a causal model, the probative value of the
evidence derives in a systematic way from our prior beliefs about causal relations in the domain
of interest – that is, from a lower-level model together with our beliefs about which causal
effects are more or less likely to be operating in that model.

4For a given value of 𝜆𝐾
01, we hold the other 𝜆𝐾 values equal by assigning a value of (1 − 𝜆𝐾

01)/3 to each.
5For a given value of 𝜆𝐾

11, we hold the other 𝜆𝐾’s equal by assigning a value of (1 − 𝜆𝐾
11)/3 to each; likewise

for 𝜆𝑌
11 and the other 𝜆𝑌 values.
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Figure 7.2: The probability of observing 𝐾 given causal types for different beliefs on lower
level causal effects.

7.4 Assessing Probative Value from a Graph

As we have argued, causal queries can be expressed as collections of combinations of nodal
types (i.e., as collections of causal types) in a causal model. A nodal type is itself represented
as an unobservable node in a model—as a 𝜃𝑗 pointing into node 𝑗. Thus, causal inference in
this framework is the use of observable nodes on a causal graph to assess the value of one
or more unobserved nodes on a causal graph. Placing our queries on the graph together with
the observable nodes has the important advantage of allowing us to graphically identify the
possibilities for learning about these queries: that is, to figure out which observable nodes are
potentially informative about a given query.

To think through the logic of potential probative value, it is useful to distinguish among three
different features of the world, as represented in our causal model: there are the things we
want to learn about; the things we have already observed; and the things we could observe.
As notation going forward, we let:

• 𝑄 denote the set of 𝜃𝑗 nodes that define our query; usually 𝑄 cannot be directly observed
so that its values must be inferred;

• 𝑊 denote a set of previously observed nodes in the causal model; and
• 𝐾 denote a set of additional variables—clues—that we have not yet observed but could

observe.

Now suppose that we seek to design a research project to investigate a causal question. How
should the study be designed? Given that there are some features of the world that we have
already observed, which additional clues should we seek to collect to shed new light on our
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question? In terms of the above notation, what we need to figure out is whether a given 𝐾 might
be informative about—might provide additional leverage on—𝑄 given the prior observation of
𝑊 .

To ask whether one variable (or set of variables) is informative about another is to ask whether
the two (sets of) variables are, on average, related with one another, given whatever we already
know. Conversely, if two variables’ distributions are fully independent of one another (condi-
tional on what else we have observed), then knowing the value of one variable can provide no
new information about the value of the other.

Thus, asking whether a set of clues, 𝐾, is informative about 𝑄 given the prior observation of
𝑊 , is equivalent to asking whether 𝐾 and 𝑄 are conditionally independent given 𝑊 . That is,
𝐾 can be informative about 𝑄 given 𝑊 only if 𝐾 and 𝑄 are not conditionally independent of
one another given 𝑊 .

As our discussion of conditional independence in Chapter 2 implies, as long as we have built
𝑄, 𝐾, and 𝑊 into our causal model of the phenomenon of interest, we can answer this kind
of question by inspecting the structure of the model’s DAG. In particular, what we need to go
looking for are relationships of 𝑑-separation. The following proposition, with only the names
of the variable sets altered, is from Pearl (2009) (Proposition 1.2.4):

Proposition 1: If sets 𝑄 and 𝐾 are 𝑑-separated by 𝑊 in a DAG, 𝒢, then 𝑄 is independent
of 𝐾 conditional on 𝑊 in every distribution compatible with 𝒢. Conversely, if 𝑄 and 𝐾 are
not 𝑑-separated by 𝑊 in 𝒢, then 𝑄 and 𝐾 are dependent conditional on 𝑊 in at least one
distribution compatible with 𝒢.

We begin with a causal graph and a set of nodes on the graph (𝑊 ) that we have already
observed. Given what we have already observed, a collection of clue nodes, 𝐾, will be uninfor-
mative about the query nodes, 𝑄, if 𝐾 is 𝑑-separated from 𝑄 by 𝑊 on the graph. (Equivalently,
𝐾, will be uninformative about 𝑄, given that we have already observed 𝑊 , if 𝐾 and 𝑄 are
conditionally independent given 𝑊 .) When 𝑊 𝑑-separates 𝐾 from 𝑄, this means that what
we have already observed already captures all information that the clues might yield about our
query. On the other hand, if 𝐾 and 𝑄 are 𝑑-connected (i.e., not 𝑑-separated) by 𝑊 , then 𝐾 is
possibly informative about 𝑄.6 Note, moreover, that under quite general conditions (referred
to in the literature as the faithfulness of a probability distribution), there are then at least
some values of 𝑊 for which 𝐾 will be informative about 𝑄.7

Let us examine Proposition 1 in practice. We begin with the simplest case possible, and then
move on to more complex models.

6This proposition is almost coextensive with the definition of a DAG. A DAG is a particular kind of dependency
model (“graphoid”) that is a summary of a collection of “independency statements”, (𝐼), over distinct subsets
of 𝒱 (Pearl and Verma 1987), where 𝐼(𝒬, 𝒲, 𝒦) means “we learn nothing about 𝑄 from 𝐾 if we already
know 𝑊 .” More formally: 𝐼(𝒦, 𝒲, 𝒬) ↔ 𝑃(𝒦, 𝒬|𝒲) = 𝑃(𝒦|𝒲)𝑃(𝒬|𝒲). A DAG dependency model is
one where the set of independencies corresponds exactly to the relations that satisfy 𝑑-separation (Pearl and
Verma 1987, p376). Thus on DAG 𝒢, 𝐼(𝒦, 𝒲, 𝒬)𝒢 implies that 𝐾 and 𝑄 are 𝑑-separated by 𝑊 .

7Put differently, there will not be any conditional independencies that are not captured in the DAG.
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The very simplest probabilistic causal graph, shown in Figure 7.3, has 𝑋 influencing 𝑌 , with
𝑋 determined by a coin flip. If we want to know 𝑋’s effect on 𝑌 , this query is defined
solely in terms of 𝑌 ’s nodal type, 𝜃𝑌 . To help us conceptualize the more general point about
informativeness for queries, we relabel 𝜃𝑌 as 𝑄 to emphasize the fact that this node represents
our query.

X Y

Q

Simplest X, Y, graph

Figure 7.3: A simple causal model in which the effect of 𝑋 on 𝑌 in a given case depends on
the case’s nodal type for 𝑌 (here marked 𝑄 to highlight that this quantity is the
query of interest).

Let us assume that we have observed nothing yet in this case and then ask what clue(s) might
be informative about 𝑄, the node of interest. The other two nodes in the graph are 𝑋 and 𝑌 :
These are thus the possible clues that we might go looking for in our effort to learn about 𝑄
(i.e., they are the possible members of 𝐾).

First, can we learn about 𝑄 by observing 𝑋? We can answer this question by asking whether
𝑋 is 𝑑-connected to 𝑄 on the graph given what we have already observed (which is nothing).
We can see visually that there is no active path from 𝑋 to 𝑄: The only path between 𝑋
and 𝑄 is blocked by colliding arrow heads. Thus, 𝑋 and 𝑄 are 𝑑-separated, meaning that
𝑋 will not be informative about 𝑄: observing the value that a causal variable takes on in a
case—having seen nothing else in the case—tells us nothing whatsoever about that variable’s
effect on the outcome. If we want to know whether a case is of a type in which the presence of
natural resources would cause civil war, for instance, observing only that the case has natural
resources does not help answer the question.

What, then, if we instead were to observe only 𝑌 ? Is 𝑌 𝑑-connected to 𝑄 given what we have
already observed (which, again, is nothing)? It is: the arrow from 𝑄 to 𝑌 is an active path.
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Observing only the outcome in a case does tell us something about causal effects. Returning
to the natural resources and civil war example, observing only that a country has had a civil
war is informative about the case’s causal type (the value of 𝑄). In particular, it rules out the
possibility that this is a case in which nothing could cause a civil war: that is, it excludes 𝜃𝑌

00
(i.e., 𝑐-type) as a possible value of 𝑄.

Suppose now, having observed 𝑌 , that we were to consider also observing 𝑋. Would we learn
anything further about 𝑄 from doing so? We have already seen that observing 𝑋 alone yields no
information about 𝑄 because the two nodes are unconditionally 𝑑-separated, the path between
them blocked by the colliding arrowheads at 𝑌 . However, as we have seen, observing a collider
variable (or one of its descendants) unblocks the flow of information, generating relations of
conditional dependence across the colliding arrowheads. Here, 𝑋 and 𝑄 are 𝑑-connected by
𝑌 : Thus, if we have already observed 𝑌 , then observing 𝑋 does confer additional information
about 𝑄. Knowing only that a country has natural resources tells us nothing about those
resources’ effect on civil war in that country. But if we already know that the country has a
civil war, then learning that the country has natural resources helps narrow down the case’s
possible nodal types for 𝑌 . Having already used the observation of 𝑌 = 1 to rule out the
possibility of 𝜃𝑌

00, observing 𝑋 = 1 together with 𝑌 = 1 allows us to additionally rule out the
possibility that natural resources prevent civil war, that is, that 𝑄 = 𝜃𝑌

10.8

Finally, what if we observe 𝑋 first and are considering whether to seek information about 𝑌 ?
Would doing so be informative? 𝑋 does not 𝑑−separate 𝑄 from 𝑌 ; thus, observing 𝑌 will
be informative about 𝑄. In fact, observing 𝑌 if we have already seen 𝑋 is more informative
than observing 𝑌 alone. The reasoning follows the logic of collision discussed just above. If
we observe 𝑌 having already seen 𝑋, not only do we reap the information about 𝑄 provided
by 𝑌 ’s correlation with 𝑄; we simultaneously open up the path between 𝑋 and 𝑄, learning
additionally from the conditional dependence between 𝑋 and 𝑄 given 𝑌 .

We put Proposition 1 to work in a slightly more complex set of models in Figure 7.4. Here we
investigate the informativeness of a clue that is neither 𝑋 nor 𝑌 . Each graph in Figure 7.4 has
four variables: 𝑋; 𝑌 ; a possible clue, 𝐾; and a node, 𝑄, representing the query. It is probably
most intuitive to think of 𝑄 in these graphs simply as 𝜃𝑌 ; but we leave the notation a bit more
general to emphasize that any query can be composed of multiple nodal types.9

We draw all 34 possible graphs with variables 𝑋, 𝑌 , 𝐾, and 𝑄 for causal models in which (a)
all variables are connected to at least one other variable, (b) 𝑋 causes 𝑌 either directly or
indirectly, and (c) 𝑄 is a direct cause of 𝑌 but is not caused by any other variable in the model.
The title of each panel reports 𝐾’s conditional informativeness using principles of 𝑑-separation:
It tells us when 𝐾 is possibly informative about 𝑄 depending on whether 𝑋, 𝑌 , both, or none
are observed.10

8That is, we can rule out that the case is an 𝑎 type, or one with a negative causal effect.
9Recall, for instance, how a query about 𝑋’s causal effect on 𝑌 in an 𝑋 → 𝑀 → 𝑌 model is a question about

the values of both 𝜃𝑀 and 𝜃𝑌 .
10Note the “possibly” can be dropped under the assumption that the underlying probability model is “stable”

(Pearl 2009, section 2.9.1) and with the interpretation that 𝐾 is informative about 𝑄 for some, but not
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Figure 7.4: All connected directed acyclic graphs over 𝑋𝑌 𝐾𝑄 in which 𝑄 is a root node that
directly causes 𝑌 and 𝑋 is a direct or indirect cause of 𝑌 . Graph titles indicate
conditions under which 𝐾 can be informative about 𝑄 given prior observation of
𝑋 𝑌 both or neither (0).
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The results show us not just what kinds of variables can be informative about the nodal types
operating in a case but also what combinations of observations yield leverage on case-level
causal effects. A number of features of the graphs are worth highlighting:

• Clues at Many Stages. Process tracing has focused a great deal on observations
that lie “along the path” between suspected causes and outcomes. What we see in
Figure 7.4, however, is that observations at many different locations in a causal model
can be informative about causal effects. We see here that 𝐾 can be informative when it
is pre-treatment (causally prior to 𝑋—e.g., panel (3)), post-treatment but pre-outcome
(i.e., “between” 𝑋 and 𝑌 as, e.g., in panel (20)), an auxiliary effect of 𝑋 that itself has
no effect on 𝑌 (e.g., in panel (19)), a post-outcome observation (after 𝑌 —e.g., in panel
(15)), or a joint effect of both the suspected cause and the main outcome of interest (e.g.,
panel (31)).

Mediator Clues.

While clues that lie in between 𝑋 and 𝑌 may be informative, how informative they are depends
on what else is known. For instance, when a clue serves only as a mediator in our model (i.e.,
its only linkages are being caused by 𝑋 and affecting 𝑌 and 𝑄 points only into 𝑌 , as in panels
(20) and (21), the clue is only informative about 𝑄 if we have also observed the outcome, 𝑌 .
Of course, this condition may commonly be met—qualitative researchers usually engage in
retrospective research and learn the outcome of the cases they are studying early on—but it
is nonetheless worth noting why it matters: In this setup, 𝐾 is unconditionally 𝑑-separated
from 𝑄 by the collision at 𝑌 ; it is only by observing 𝑌 (the collider) that the path between
𝐾 and 𝑄 becomes unblocked. (As we saw above, the very same is true for observing 𝑋; it is
only when we know 𝑌 that 𝑋 is informative about 𝑄.)

In short, observations along causal paths are more helpful in identifying causal effects to the
extent that we have measured the outcome. Importantly, this is not the same as saying that
mediator clues are only informative about causal effects where we have observed the outcome.
Observing 𝑌 is necessary for the mediator to be informative about a 𝑄 term that is connected
only to 𝑌 . Observing a mediator without the outcome, however, could still be informative
about the overall effect of 𝑋 on 𝑌 by providing leverage on how the mediator responds to
𝑋, which is itself informative about 𝑋’s effect on 𝑌 via the mediator.11 Moreover, observing
the mediator could be informative without the observation of 𝑌 if, for instance, 𝑄 also points
into 𝐾 itself or into a cause of 𝐾. As we discuss below, the clue then is informative as a
“symptom” of one or more nodal types, generating learning that does not hinge on observing
the outcome.

Symptoms as Clues.

necessarily all, values of 𝑊 .
11In other words, the clue would then be providing leverage on the mediator’s nodal type, that is, on a 𝜃 node

pointing into the mediator itself.
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Some clues may themselves be affected by 𝑄: that is to say, they may be symptoms of the same
conditions that determine causal effects in a case. Imagine, for instance, a model of political
corruption in which how politicians respond to institutional structures—whether institutions,
𝑋, curb their tendency to act corruptly, 𝑌 —depends on their underlying motives. Institutions
that strengthen governmental transparency and accountability, for instance, might reduce
corruption among those politicians who value long-term policy influence but not among those
who value only short-run personal enrichment. In this model, politicians’ motives essentially
operate as an unobservable nodal type, in the position of 𝑄, determining institutions’ effects
on corruption. While we cannot directly observe politicians’ motives, however, there may
be consequences of politicians’ motives that are observable: for instance, whether politicians
regularly make policy decisions with broad, long-run societal benefits. While such policy
decisions would not be part of the causal chain generating institutions’ effect on corruption,
observing those policy decisions (or the lack of them) would be informative about that effect
because these decisions are a symptom of the same conditions (politicians’ motives) that enable
or disable the effect.

We see that 𝐾 is a child or descendant of 𝑄 in several of the graphs in Figure 7.4: 𝑄 directly
causes 𝐾 in panels (7) through (14), (17), (18), (25)-(30), (33), and (34); 𝑄 causes 𝐾 only
indirectly through 𝑋 in panels (22) through (24); 𝑄 causes 𝐾 only indirectly through 𝑌 in
panels (15), (16), and (31); and 𝑄 causes 𝐾 only indirectly through 𝑋 and through 𝑌 in
panel (32). We can then use the principle of 𝑑-separation to figure out when the symptom clue
is potentially informative, given what we have already observed. It is easy to see that 𝐾 is
potentially informative, no matter what we have already observed, if 𝐾 is directly affected by
𝑄; there is nothing we could observe that would block the 𝑄 → 𝐾 path. Thus, 𝑄’s “symptom”
can, in this setup, contain information about type above and beyond that contained in the 𝑋
and 𝑌 values. However, where 𝑄 affects 𝐾 only through some other variable, observing that
other variable renders 𝐾 uninformative by blocking the 𝑄-to-𝐾 path. For instance, where 𝑄
affects 𝐾 indirectly through 𝑋, once we observe 𝑋, we already have all the information about
𝑄 that would be contained in 𝐾.

Surrogates as Clues.

Clues may be consequences of the outcome, as in graphs (15) and (16). If 𝐾 is a consequence
only of Y, then it will contain no new information about 𝑄 when 𝑌 is already known. However,
in situations where the outcome has not been observed, 𝐾 can act as a “surrogate” for the
outcome and thus yield leverage on 𝑄 (Frangakis and Rubin (2002)). A researcher might,
for instance, want to understand causal effects on an outcome that is difficult to directly
observe: consider, studies that seek to explain ideational change. Ideas themselves, the 𝑌 in
such studies, are not directly observable. However, their consequences—such as statements by
actors or policy decisions—will be observable and can thus serve as informative surrogates for
the outcome of interest.

Clues may similarly serve as surrogates of a cause, as in graphs (19) and (22). Here 𝑋 causes
𝐾, but 𝐾 plays no role in the causal process generating 𝑌 . 𝐾 is of no help if we can directly
measure 𝑋 since the latter 𝑑-separates 𝐾 from 𝑄. But if an explanatory variable cannot
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be directly measured—consider, again, ideas or preferences as causes—then its consequences,
including those that have no relationship to the outcome of interest, can provide leverage on
the case-level causal effect.

Clues can also be a consequence of both our suspected cause and the outcome of interest, thus
serving as what we might call “double surrogates,” as in panels (31) and (32). Here, 𝑋 is a
direct cause of 𝑌 , and 𝐾 is a joint product of 𝑋 and 𝑌 . A double surrogate can be informative
as long as we have not already observed both 𝑋 and 𝑌 . Where data on either 𝑋 or 𝑌 are
missing, there is an open path between 𝐾 and 𝑄. If we have already observed both, however,
then there is nothing left to be learned from 𝐾.

Instruments as Clues.

Clues that are causally prior to an explanatory variable, and have no other effect on the
outcome, can sometimes be informative. Consider, for instance, graph (3). Here 𝐾 is the only
cause of 𝑋. It can thus serve as a proxy. If we have seen 𝑋, then 𝑋 blocks the path between
𝐾 and 𝑄, and so 𝐾 is unhelpful. 𝐾 can be informative, though, if we have not observed 𝑋.
Note that informativeness here still requires that we observe 𝑌 . Since 𝑌 is a collider for 𝑄
and the 𝐾 → 𝑋 → 𝑌 chain, we need to observe 𝑌 in order to 𝑑-connect 𝐾 to 𝑄.

A rather different setup appears in graph (5), where both 𝐾 and 𝑄 cause 𝑋. Now the conditions
for 𝐾’s informativeness are broader. Observing 𝑋 still makes 𝐾 uninformative as a proxy for
𝑋 itself. However, because 𝑋 is a collider for 𝐾 and 𝑄, observing 𝑋 opens up a path from 𝐾
to 𝑄, rendering a dependency between them. Still, we have to observe at least one of 𝑋 or 𝑌
for the instrument to be informative here. This is because both of 𝐾’s paths to 𝑄 run through
a collision that we need to unblock by observing the collider. For one path, the collider is 𝑋;
for the other path, the collider is 𝑌 .12

Other patterns involving instrumentation are also imaginable, though not graphed here. For
example, we might have a causal structure that combines instrumentation and surrogacy.
Suppose that 𝑋 is affected by 𝑄 and by an unobservable variable 𝜃𝑋; and that 𝜃𝑋 has an
observable consequence, 𝐾. Then, 𝐾, though not a cause of 𝑋, is a “surrogate instrument”
(Hernán and Robins 2006) as it is a descendant of an unobserved instrument, 𝑈 , and thus
allows us to extract inferences similar to those that we could draw from a true instrument.

Confounders as Clues.

In several of the graphs, 𝐾 is a confounder in that it is a direct cause of both 𝑋 and 𝑌 (panels
(4), (6), (12), and (14)). Let us focus on graph (4), which isolates 𝐾’s role as a confounder.
Here, 𝐾 can be informative via two possible paths. First, if 𝑋 is not observed but 𝑌 is, then
12As a simple example one might imagine a system in which 𝑋 = 𝐾 if 𝑞 ∈ 𝑎, 𝑏 and 𝑋 = 1−𝐾 if 𝑞 ∈ 𝑐, 𝑑. Then,

if we observe, say, 𝑋 = 𝑌 = 𝐾 = 1, we can infer that 𝑞 = 𝑏. Another way to think about what is happening
in graph (5) is that 𝐾 is providing information about the assignment process. In this graph, the causal
effect (𝑌 ’s potential outcomes, determined by 𝑄) is also a partial determinant of the assignment of cases
to values on 𝑋. In terms of cross-case correlational inference, then, we would think of this as a situation
of confounding. Observing another cause of 𝑋, then, allows us to more fully characterize the process of
assignment.
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𝐾 is 𝑑-connected to 𝑄 along the path 𝐾 → 𝑋 → 𝑌 ← 𝑄. 𝐾 is in this sense serving as a
proxy for 𝑋, with its path to 𝑄 opened up by the observation of the collider, 𝑌 . Second, with
𝑌 observed, 𝐾 can provide information on 𝑄 via the more direct collision, 𝐾 → 𝑌 ← 𝑄. If
𝑋 is observed, then the first path is blocked, but the second still remains active. As with any
pre-outcome variable, for a confounder clue to provide purchase on 𝑌 ’s nodal type, 𝑌 itself
must be observed.

In a sense, then, the role of confounders as clues in case-level inference is the mirror image
of the role of confounders as covariates in cross-case correlational inference. In a correla-
tional inferential framework, controlling for a variable in 𝐾’s position in graph (5) renders
the 𝑋, 𝑌 correlation (which we assume to be observed) informative about 𝑋’s average causal
effect. When we use confounders as evidence in within-case inference, it is our observations of
other variables that determine how informative the confounder itself will be about 𝑋’s causal
effect.

It is important to be precise about the kinds of claims that one can make from graphs like
those in Figure 7.4. The graphs in this figure allow us to identify informativeness about an
unobserved node 𝑄 that is a parent of 𝑌 . This setup does not, however, capture all the ways
in which clues can be informative about the causal effect of 𝑋 on 𝑌 or about other causal
queries of interest. For instance, as noted above, even if a clue is uninformative about a 𝑄 node
pointing into 𝑌 , it may still help establish whether 𝑋 causes 𝑌 : The statement that 𝑋 causes
𝑌 will for some graphs be a statement about a collection of nodes that comprise the query.
This is the case, for instance, in any graph of the form 𝑋 → 𝑀 → 𝑌 , where we are interested
not just in 𝑌 ’s response to 𝑀 (the mediator) but also in 𝑀 ’s response to 𝑋. Of interest, thus,
are not just a 𝜃𝑌 node pointing into 𝑌 but also a 𝜃𝑀 node pointing into 𝑀 . Observations that
provide leverage on either component of our query will thus aid an inference about the overall
causal effect. A clue 𝐾 that is 𝑑-separated from 𝜃𝑌 may nevertheless be informative about
𝑋’s effect on 𝑌 if it is not 𝑑-separated from 𝜃𝑀 . This opens up a broader range of variables
as potentially informative clues.

Additionally, as our discussion in Chapter 2 makes clear, queries other than the case-level
causal effect—such as average causal effects, actual causes, and causal paths—involve par-
ticular features of context: particular sets of exogenous nodes as members of our query set,
𝑄. Thus, even for the same causal model, informativeness will be defined differently for each
causal question that we seek to address. The broader point is that we can identify what kinds
of observations may address our query if we can place that query on a causal graph and then
assess the graph for relationships of 𝑑-separation and -connection.

Further, we emphasize that a DAG can only tell us when a clue may be informative (perhaps
conditional on some prior observation): thus, 𝑑-connectedness is necessary but not sufficient
for informativeness. This fact follows directly from the rules for drawing a causal graph:
The absence of an arrow between two variables implies that they are not directly causally
related, while the presence of an arrow does not imply that they always are. Whether variables
connected to one another by arrows are in fact causally related can depend on the values of
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other nodes. Likewise, whether a clue 𝐾 is in fact informative may depend on particular values
of 𝑊—the variables that have already been observed.

As a simple example, let 𝑞 = 𝑘1𝑤 + (1 − 𝑤)𝑘2, where 𝑊 is a variable that we have already
observed and 𝐾1 and 𝐾2 are clues that we might choose to observe next. Here, if 𝑤 = 1 then
learning 𝐾1 will be informative about 𝑄, and learning 𝐾2 will not; but if 𝑤 = 0, then 𝐾1 will
be uninformative (and 𝐾2 informative).

In general, then, graphical analysis alone can help us exclude unhelpful research designs, given
our prior observations and a fairly minimal set of prior beliefs about causal linkages. This is
no small feat. But identifying those empirical strategies that will yield the greatest leverage
requires engaging more deeply with our causal model, as we show in detail in our discussion
of clue-selection in Chapter 12.

7.5 Principles of Learning

While we can use software (such as CausalQueries) to implement process-tracing inference
for us, it is helpful for researchers to be able to reason their way through what is happening
“under the hood.” We provide here some core principles and intuitions for thinking through
the features of models and queries that influence whether and how much we can learn from
within-case observations.

7.5.1 A DAG Alone Does Not Guarantee Probative Value for a Single Case

A DAG puts qualitative structure on causal relations, but quantitative implications depend
on the beliefs over causal types. In general, learning from new data requires that, conditional
on known data, the probability of a new data pattern is different depending on whether or not
the query is true. With flat priors, this condition may not hold for many queries of interest.

To illustrate, suppose that we are interested in whether 𝑋 caused 𝑌 and we posit a simple
𝑋 → 𝑀 → 𝑌 model with flat priors over 𝜃𝑀 and 𝜃𝑌 . Now we would like to conduct process
tracing and observe 𝑀 to tell us about the effect of 𝑋 on 𝑌 in a case with 𝑋 = 𝑌 = 1.

Does the observation of 𝑀 provide leverage on whether 𝑋 = 1 caused 𝑌 = 1?

It does not. We can learn nothing about 𝑋’s effect on 𝑌 from observing 𝑀 (again: when we
have flat priors and we are examining a single case).

To see why, consider that there are two causal types that will satisfy the query, 𝑋 = 1 caused
𝑌 = 1. Those are the types 𝜃𝑋

1 𝜃𝑀
01𝜃𝑌

01 and 𝜃𝑋
1 𝜃𝑀

10𝜃𝑌
10: Either linked positive effects or linked

negative effects could generate an overall positive effect of 𝑋 on 𝑌 . Moreover, with flat priors
over nodal types, these causal types are equally likely. Now think about what we would
conclude if we collected process data and observed 𝑀 = 1 in the 𝑋 = 𝑌 = 1 case. This
observation would rule out various ways in which 𝑋 did not cause 𝑌 but it also rules out one
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way in which the query could be satisfied: the causal type with linked negative effects. And
what if we observed, instead, 𝑀 = 0? This would have similar implications, this time ruling
out the other way in which the query could be satisfied: linked positive effects. Intuitively, we
would update the same way no matter what we find, which means we must not be updating
at all.

More formally, conditional on observing 𝑋 = 1, 𝑌 = 1 our prior that 𝑋 caused 𝑌 is:

𝜆𝑀
01𝜆𝑌

01 + 𝜆𝑀
10𝜆𝑌

10
(𝜆𝑀

01 + 𝜆𝑀
11)(𝜆𝑌

01 + 𝜆𝑌
11) + (𝜆𝑀

10 + 𝜆𝑀
00)(𝜆𝑌

10 + 𝜆𝑌
11)

Our posterior on observing 𝑀 = 1 is:

𝜆𝑀
01𝜆𝑌

01
(𝜆𝑀

01 + 𝜆𝑀
11)(𝜆𝑌

01 + 𝜆𝑌
11)

it is easy to see these are equal with flat priors (𝜆𝑗
𝑎𝑏 = 𝜆𝑗∗ for all 𝑎, 𝑏). What we can see

from the comparison is that when we observe data we rule out half the types consistent with
the data (denominator) but also rule out half the types consistent with the query and data
(numerator) .

However that informative priors on either 𝜃𝑀 or 𝜃𝑌 , would help here. For instance, if we
believed that linked positive effects are more likely than linked negative effects, then observing
𝑀 would be informative. Seeing 𝑀 = 1 would then rule out the less likely way in which the
query could be satisfied but rule in the more likely way, thus increasing our confidence that
𝑋 = 1 caused 𝑌 = 1. Seeing 𝑀 = 0 would reduce that confidence by ruling out the most
likely way in which this effect could occur.

More generally, what we need at the level of priors depends on the query. Suppose that we start
with the model, 𝑋 → 𝑀 → 𝑌 , and formulate the following query: Does 𝑋 have a positive
effect on 𝑌 that runs through a chain of positive effects via 𝑀? We can learn about this
query without any informative priors over nodal types because of the way in which the query
itself restricts the type space. Since the query is not satisfied if negative mediating effects
are operating, we will update to probability 0 on the query for any observation that violates
𝑋 = 𝑀 = 𝑌 , and we will update upwards on the query for any observation of 𝑋 = 𝑀 = 𝑌 .

7.5.2 Learning Requires Uncertainty

While case-level inference from within-case evidence often requires informative priors about
nodal types, there is also such a thing as too much information—or, put differently, as insuffi-
cient uncertainty about causal relations. Suppose, for instance, that our beliefs are such that
𝑋 always has a positive effect on 𝑀 in an 𝑋 → 𝑀 → 𝑌 model. Consider, further, that we
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already know that 𝑋 = 1 in a case. In that situation, nothing can be learned by observing 𝑀
since the prior observation of 𝑋 already reveals 𝑀 ’s value given our prior beliefs.

To take a less extreme example, suppose that our priors put a very high probability on 𝑋’s
having a positive effect on 𝑀 and that, again, we already know that 𝑋 = 1 in a case. In that
situation, we should expect to learn very little from observing 𝑀 since we believe that we are
very likely to see 𝑀 = 1, given that we already know 𝑋 = 1. It is true that our beliefs will shift
if we look for 𝑀 and find the unexpected value of 𝑀 = 0. But because that data-realization
is highly unlikely, we should expect the learning from observing 𝑀 to be minimal.

We address the concept of expected learning more systematically in Chapter 12 and Chapter 13,
but our general point here is that, we will learn more from process-tracing evidence, to the
extent that (a) we know enough about causal relations in a domain to know how to make
causal sense of the evidence we find, but (b) we do not know so much that that evidence can
be largely predicted from what we have already observed.

7.5.3 Population-Level Uncertainty and Case-Level Causal Inference

In the procedure we described for process tracing in this chapter (and different to what we
introduce in Chapter 8), we have assumed that 𝜆 is known and we do not place uncertainty
around it.

This might appear somewhat heroic, but in fact for single case inference, if priors are defined
directly over causal types, it is without loss of generality. The expected inferences we would
make for any query accounting for uncertainty in priors over causal types is the same as the
inferences we make if we use the expectation only.

With a little abuse of notation say that 𝜃 ∈ 𝐷 if causal type 𝜃 produces data type 𝐷; let 𝑞
denote a query and say 𝜃 ∈ 𝑄 if causal type 𝜃 satisfies the query.

Let 𝜋(𝜃|𝜆) denote the probability of causal type 𝜃 given 𝜆 and 𝑝(𝜆) a prior distribution over
𝜆. Then, the posterior on 𝑄 given data 𝐷 is:

Pr(𝑄|𝐷) = Pr(𝐷, 𝑄)
Pr(𝐷) =

∫𝜋 ∑𝜃∈𝑄∩𝐷 𝜋(𝜃|𝜆)𝑝(𝜆)𝑑𝜆
∫𝜋 ∑𝜃∈𝐷 𝜋(𝜃|𝜆)𝑝(𝜆)𝑑𝜆 =

∑𝜃∈𝑄∩𝐷 𝜋(𝜃)
∑𝜃∈𝐷 𝜋(𝜃)

where 𝜋(𝜃) = ∫ 𝜋(𝜃|𝜆)𝑝(𝜆)𝑑𝜆 is the expected value of 𝜆 under 𝑓 and the last step involves
swapping the summation and integral.

For intuition, in an 𝑋 → 𝑌 model, if we observe 𝑋 = 𝑌 = 1 then 𝐷 consists of causal types
𝐷 = {(𝜃𝑋

1 , 𝜃𝑌
01), (𝜃𝑋

1 , 𝜃𝑌
11)} and the query set for “𝑋 has a positive effect on 𝑌 ” consists of

𝑄 = {(𝜃𝑋
1 , 𝜃𝑌

01), (𝜃𝑋
0 , 𝜃𝑌

01)}. Then 𝑄 ∩ 𝐷 = {(𝜃𝑋
1 , 𝜃𝑌

01)}. Say we entertain two different values
for the distribution of types: We believe with probability 𝑠 that Pr(𝜃 = (𝜃𝑋

1 , 𝜃𝑌
01)) = 𝜆′

𝑏 and
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Pr(𝜃 = (𝜃𝑋
1 , 𝜃𝑌

11)) = 𝜆′
𝑑 and we believe with probability 1 − 𝑠 that Pr(𝜃 = (𝜃𝑋

1 , 𝜃𝑌
01)) = 𝜆″

𝑏 and
Pr(𝜃 = (𝜃𝑋

1 , 𝜃𝑌
11)) = 𝜆″

𝑑. We then have:

Pr(𝑄|𝐷) = Pr(𝐷, 𝑄)
Pr(𝐷) (7.2)

= 𝑠𝜆′
𝑏 + (1 − 𝑠)𝜆″

𝑏
𝑠(𝜆′

𝑏 + 𝜆′
𝑑) + (1 − 𝑠)(𝜆″

𝑏 + 𝜆″
𝑑) (7.3)

= 𝑠𝜆′
𝑏 + (1 − 𝑠)𝜆″

𝑏
(𝑠𝜆′

𝑏 + (1 − 𝑠)𝜆″
𝑏 ) + (𝑠𝜆′

𝑑 + (1 − 𝑠)(𝜆″
𝑑)) (7.4)

= 𝜆𝑏
𝜆𝑏 + 𝜆𝑑

(7.5)

Note, however, that the same cannot be said if priors are specified over nodal types rather
than directly over causal types. One might imagine for instance being certain that 𝑋 causes
𝑌 in a 𝑋 → 𝑀 → 𝑌 model but uncertain as to whether the effect works through a sequence
of two positive effects or a sequence of two negative effects. In this case the expected effect of
𝑋 on 𝑀 could be 0 as could the expected effect of 𝑀 on 𝑌 . Using this information without
retaining information about the joint distribution of beliefs over these relations would lead us
astray.
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Table 7.8: Nodal types and observed nodal values for a single hypothetical case from an 𝑋 →
𝑀 → 𝑌 model

node nodal_type observed
X 0 0
M 00 0
Y 11 1

7.6 Chapter Appendix: Process Tracing with CausalQueries

7.6.1 Example 1: Simple Model

Imagine a simple model in which 𝑋 → 𝑀 → 𝑌 . We can define the model thus:

model <- make_model("X -> M -> Y")

This model will be of limited use to us without some more specification of how processes work.
We can make progress for instance if we have informative priors. Most simply we can impose
various monotonicity assumptions thus:

model <- model |>
set_restrictions(decreasing("X", "M")) %>%
set_restrictions(decreasing("M", "Y"))

From this model we can draw a single case and examine parameter values (𝜃) and observed
data for the case. See Table 7.8.

We can also start making inferences given a specified query given different clue patterns. Here
for instance we query the effect of 𝑋 on 𝑌 for a case with 𝑋 = 𝑌 = 1 given different possible
observations on 𝑀 (see Table 7.9).

queries <-
query_model(model = model,

query = c("Y[X=1] > Y[X=0]",
"Y==1 & X==1 & M==0",
"Y==1 & X==1 & M==1"),

using = "priors",
case_level = TRUE)

We see here that the monotonicity assumptions are enough to make observation of 𝑀 into a
hoop test for the proposition that (X,{=},1) caused (Y,{=},1).
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Table 7.9: Inferences given different clue observations (simple model)

label query given using case_level mean
Y[X=1] > Y[X=0] :|: X==1 & Y==1 Y[X=1] > Y[X=0] X==1 & Y==1 priors TRUE 0.202
Y[X=1] > Y[X=0] :|: X==1 & Y==1 & M==0 Y[X=1] > Y[X=0] X==1 & Y==1 & M==0 priors TRUE 0.000
Y[X=1] > Y[X=0] :|: X==1 & Y==1 & M==1 Y[X=1] > Y[X=0] X==1 & Y==1 & M==1 priors TRUE 0.252

7.6.2 Example 2: Many Clues

For a second example, we imagine a more complex process with three types of clues: a mediator
clue (𝐾1) a moderator clue (𝐾2) and a post treatment clue (𝐾3)—which could for instance
represent whether a case has been selected for study in the first place.

The model is constructed and graphed thus (see Figure 7.5):

model <- make_model("X -> K1 -> Y <- K2; Y -> K3; Y <-> K3")

plot(model)

We impose various monotonicity assumptions and set priors reflecting a belief that those cases
in which 𝐾1 and 𝐾2 are likely to jointly produce 𝑌 are very likely to be selected for study
(𝐾3 = 1) regardless of the value of 𝑌 .

model <- make_model("X -> K1 -> Y <- K2; Y -> K3; Y <-> K3") %>%
set_restrictions(decreasing("X", "K1")) %>%
set_restrictions(decreasing("K1", "Y")) %>%
set_restrictions(decreasing("K2", "Y")) %>%
set_restrictions(decreasing("Y", "K3")) %>%
set_priors(given = "Y.0001", nodal_type = "11", 10)

Table 7.10 gives an example of a single case drawn from this model, showing both nodal types
(𝜃) and observed data for the case.

The next code chunk generates inferences for a case in which 𝑋 = 1 and 𝑌 = 1 depending on
which clue pattern we observe (see Table 7.11 for output).

queries <-
query_model(model = model,

query = "Y[X=1] > Y[X=0]",
given = c("Y==1 & X==1",

"Y==1 & X==1 & K1==1",
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K1

K2

K3

X Y

Figure 7.5: Three potentially informative clues for the effect of 𝑋 on 𝑌

Table 7.10: Data from model with three clues

node nodal_type observed
K1 01 1
K2 0 0
K3 01 0
X 1 1
Y 1101 0

177



Table 7.11: Inferences given different clue observations

given posterior
Y==1 & X==1 0.251
Y==1 & X==1 & K1==1 0.246
Y==1 & X==1 & K2==1 0.250
Y==1 & X==1 & K3==1 0.253
Y==1 & X==1 & K1==1 & K2==1 & K3==1 0.248

"Y==1 & X==1 & K2==1",
"Y==1 & X==1 & K3==1",
"Y==1 & X==1 & K1==1 & K2==1 & K3==1"),

using = "priors",
case_level = TRUE)

We see that positive data on 𝐾1 or 𝐾3 each increase confidence that 𝑋 caused 𝑌 , with more
learning from 𝐾1. Seeing 𝐾2 = 1 weakens confidence. Positive data on all three clues increases
confidence.
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8 Process Tracing Applications

Chapter summary

We apply the causal-model-based approach to process tracing to two major substantive
issues in comparative politics: the relationship between inequality and democratization
and the relationship between institutions and economic growth. Drawing on case-level
data, we use restrictions on causal types together with flat priors to draw inferences about
a range of causal queries. The applications are both very simple, but they are sufficiently
complex to illustrate key features of process tracing with causal models: The different
types of learning that can be gleaned from evidence on moderators and mediators, the
dependence of inference from some clues on the values of other clues, and the scope for
learning from more distal historical data when researchers have beliefs over confounding
processes.

In this chapter, we illustrate how causal-model-based process-tracing works using two sub-
stantive applications that have been of central interest to students of comparative politics for
decades: the causes of democratization and the determinants of economic growth. In both
cases, we develop simple models to demonstrate the logic of process-tracing with causal mod-
els. In Chapter 10 we push the analysis further, illustrating the integration of process tracing
with cross-case correlational analysis. The key difference is that, in this chapter, we assume—
consistent with the process-tracing approach outlined in Chapter 7—that the researcher comes
to a case with a theoretical model in hand, including a set of beliefs about the shares of nodal
types in the population. In Chapter 10, as we return to the same case-level queries, we use
models that have been directly informed by data from that broader population of cases.

8.1 Inequality and Democratization

8.1.1 The Debate

Sociologists, economists, and political scientists have long theorized and empirically examined
the relationship between inequality and democracy (e.g., Dahl (1973), Bollen and Jackman
(1985), Acemoglu and Robinson (2005), Boix (2003), Ansell and Samuels (2014)). In recent
years, the work of Boix (2003), Acemoglu and Robinson (2005), and Ansell and Samuels (2014)
represent major theoretical advances in specifying when and how inequality might generate
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transitions to democracy (as well as its persistence, which we bracket here). The first and
third of these books also provide large-n cross-national and historical tests of their theories’
key correlational predictions. Haggard and Kaufman (2012), moreover, derive causal process
observations from a large number of “Third Wave” cases of democratization in order to examine
these theories’ claims about the centrality of distributional issues to regime change. We provide
a very condensed summary of the core logic of Boix (2003) and Acemoglu and Robinson (2005)
before seeking to translate that logic into a causal model for the purposes of process tracing,
using a transformed version of Haggard and Kaufman’s causal-process data.

We briefly summarize the core logics of and differences among these three sets of arguments
here, bracketing many of their moving parts to focus on the basic theorized relationship be-
tween inequality and democracy. Both Boix’s and Acemoglu and Robinson’s theories operate
within a Meltzer-Richard (Meltzer and Richard (1981)) framework in which, in a democracy,
the median voter sets the level of taxation-and-transfer and, since mean income is higher
than the median income, benefits from and votes for a positive tax rate, implying redistribu-
tion from rich to poor. The poorer the median voter, the more redistribution they will prefer.
Democracy, with its poorer median voter, thus implies greater redistribution than (right-wing)
authoritarianism—a better material position for the poor at the expense of the rich elite. Thus,
in each of these approaches, struggles over political regimes are conflicts over the distribution
of material resources.

In Boix’s model, the poor generally prefer democracy for its material benefits. When the poor
mobilize to demand regime change, the rich face a choice as to whether to repress or concede,
and they are more likely to repress as inequality is higher since, all else equal, they have more
to lose from democracy. Thus, with the poor always preferring democracy over right-wing
authoritarianism, inequality reduces the prospects for democratization.

In Acemoglu and Robinson’s model, inequality simultaneously affects the expected net gains
to democracy for both rich and poor. At low levels of inequality, democracy is relatively
unthreatening to the elite, as in Boix, but likewise of little benefit to the poor. Since regime
change is costly, the poor do not mobilize for democracy when inequality is low, and democ-
ratization does not occur. At high levels of inequality, democracy is of great benefit to the
poor but has high expected costs for the elite; thus, democratization does not occur because
the elite repress popular demands for regime change. In Acemoglu and Robinson’s model,
democracy emerges only when inequality is at middling levels: high enough for the poor to
demand it and low enough for the rich to be willing to concede it.

Ansell and Samuels, finally, extend the distributive politics of regime change in three key
ways. First, they allow for a two-sector economy, with a governing elite comprising the landed
aristocracy and an urban industrial elite excluded from political power under authoritarian
institutions. Total inequality in the economy is a function of inequality in the landed sector,
inequality in the industrial sector, and the relative size of each. Second, authoritarian (landed)
elites can tax the industrial bourgeoisie, thus giving the industrial elite an incentive to seek
constraints on autocratic rule. Third, in Ansell and Samuels’ model, rising industrial inequality
means a rising industrial elite, generating a larger gap between them and industrial workers,
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though the industrial masses are richer than the peasantry. A number of results follow, of
which we highlight just a couple. Rising land inequality reduces the likelihood of a bourgeois
rebellion by giving the landed elite greater repressive capacities and increasing their expected
losses under democracy. As industrial inequality rises, however, the industrial elite have more
to lose to confiscatory taxation and thus greater incentive to push for partial democracy (in
which they have the ability to constrain the government, while the poor remain politically
excluded) as well as greater resources with which to mobilize and achieve it. Full democracy,
brought on by joint mass and bourgeois rebellion, is most likely as the industrial sector grows
in relative size, giving the urban masses more to lose to autocratic expropriation and more
resources to mobilize and rebel.

These three theoretical frameworks thus posit rather differing relationships between inequality
and democracy. Taking these theoretical logics as forms of background knowledge, we would
consider it possible that inequality reduces the likelihood of democracy or that it increases the
likelihood of democracy. Yet one feature that is consistent with all three theories is a claim
that distributional grievances drive demands for regime change. Moreover, in both Boix and
Acemoglu and Robinson, less economically advantaged groups are, all else equal, more likely to
demand democracy the worse their relative economic position. Ansell and Samuels’ model, on
the other hand, suggests that relative deprivation may cut both ways: While poorer groups may
have more to gain from redistribution under democracy, better-off groups have more to fear
from confiscatory taxation under autocracy. In all three frameworks, mobilization by groups
with material grievances is critical to transitions to democracy: Elites do not voluntarily cede
power.

In their qualitative analysis of “Third Wave” democratizations, Haggard and Kaufman point to
additional factors, aside from inequality, that may generate transitions. Drawing on previous
work on twentieth century democratic transitions (e.g., Huntington (1993), Linz and Stepan
(1996)), they pay particular attention to international pressures to democratize and to elite
defections.

8.1.2 A Causal Model

We now treat these theories as a form of background knowledge and express them as a causal
model. We begin with the structure. Suppose we are interested in the case-level causal effect
of inequality on democratization of a previously autocratic political system. Suppose further,
to simplify the illustration, that we conceptualize both variables in binary terms: Inequality
is either high or low, and democratization either occurs or does not occur. This means that
we want to know, for a given case of interest, whether high inequality (as opposed to low
inequality) causes democracy to emerge, prevents democracy from emerging, or has no effect
(i.e., with democratization either occurring or not occurring independent of inequality). We
can represent this query in the simple, high-level causal model shown in Figure 8.1. Here,
the question, “What is the causal effect of high inequality on democratization in this case?”
is equivalent to asking what the value of 𝜃𝐷 is in the case, where the possible values are
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𝜃𝐷
00, 𝜃𝐷

01, 𝜃𝐷
10, and 𝜃𝐷

11. We assume here that the case’s nodal type, 𝜃𝐷, is not itself observable,
and thus we are in the position of having to make inferences about it.

Drawing on the logic of probative value discussed in Chapter 2, we can already identify possi-
bilities for learning about 𝜃𝐷 from the other nodes represented in this high-level graph. Merely
observing the level of inequality in a case will tell us nothing since 𝐼 is not 𝑑−connected to
𝜃𝐷 if we have observed nothing else. On the other hand, only observing the outcome—regime
type—in a case can give us information about 𝜃𝐷 since 𝐷 is 𝑑−connected to 𝜃𝐷. For instance,
if we observe 𝐷 = 1 (that a case democratized), then we can immediately rule out 𝜃𝐷

00 as a
value of 𝜃𝐷 since this type does not permit democratization to occur. Further, conditional on
observing 𝐷, 𝐼 is now 𝑑−connected to 𝜃𝐷: In other words, having observed the outcome, we
can additionally learn about the case’s type from observing the status of the causal variable.
For example, if 𝐷 = 1, then observing 𝐼 = 1 allows us additionally to rule out the value 𝜃𝐷

10
(a negative causal effect).

Now, observing just 𝐼 and 𝐷 alone will always leave two nodal types in contention. For
instance, seeing 𝐼 = 𝐷 = 1 (the case had high inequality and democratized) would leave
us unsure whether high inequality caused the democratization in this case (𝜃𝐷 = 𝜃𝐷

01) or
the democratization would have happened anyway (𝜃𝐷 = 𝜃𝐷

11). This is a limitation of 𝑋, 𝑌
data that we refer to in Humphreys and Jacobs (2015) as the “fundamental problem of type
ambiguity.” Note that this does not mean that we will be left indifferent between the two
remaining types. Learning from 𝑋, 𝑌 data alone—narrowing the types down to two—can be
quite significant, depending on our priors over the distribution of types. For example, if we
previously believed that a 𝜃𝐷

00 type (cases in which democracy will never occur, regardless of
inequality) was much more likely than a 𝜃𝐷

11 type (democracy will always occur, regardless of
inequality) and that positive and negative effects of inequality were about equally likely, then
ruling out the 𝜃𝐷

00 and 𝜃𝐷
10 values for a case will shift us toward the belief that inequality caused

democratization in the case. This is because we are ruling out both a negative effect and the
type of null effect that we had considered the most likely, leaving a null effect that we consider
relatively unlikely.

Nonetheless, we can increase the prospects for learning by theorizing the relationship between
inequality and democratization. Given causal logics and empirical findings in the existing
literature, we can say more than is contained in Figure 8.1 about the possible structure of
the causal linkages between inequality and democratization. Moreover, we can embed this
prior knowledge of the possible causal relations in this domain in a lower level model that is
consistent with the high-level model that most simply represents our query.

If we were to seek to fully capture them, the models developed by Boix, Acemoglu, and
Robinson, and Ansell and Samuels would, each individually, suggest causal graphs with a
large number of nodes and edges connecting them. Representing all variables and relationships
jointly contained in these three models would take an extremely complex graph. Yet there
is no need to go down to the lowest possible level—to generate the most detailed graph—in
order to increase our empirical leverage on the problem.
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Inequality (I)

Democratization (D)

θD

A higher level model of democratization

Figure 8.1: Simple democracy inequality model

We represent in Figure 8.2 one possible lower level model consistent with our high-level model.
Drawing on causal logics in the existing literature, we unpack the nodes in the high-level model
in two ways:

1. We interpose a mediator between inequality and democratization: mobilization (𝑀) by
economically disadvantaged groups expressing material grievances. 𝑀 is a function of
both 𝐼 and its nodal type, 𝜃𝑀 , which defines its response to 𝐼 . In inserting this mediator,
we have extracted 𝜃𝑀 from 𝜃𝐷, pulling out that part of 𝐷’s response to 𝐼 that depends
on 𝑀 ’s response to 𝐼 .

2. We specify a second influence on democratization, international pressure (𝑃 ). Like 𝜃𝑀 ,
𝑃 has also been extracted from 𝜃𝐷; it represents that part of 𝐷’s response to 𝐼 that is
conditioned by international pressures.

In representing the causal dependencies in this graph, we allow for inequality to have (in the
language of mediation analysis) both an “indirect” effect on democratization via mobilization
and a “direct” effect. The arrow running directly from 𝐼 to 𝐷 allows for effects of inequality
on democratization beyond any effects running via mobilization of the poor, including effects
that might run in the opposite direction. (For instance, it is possible that inequality has a
positive effect on democratization via mobilization but a negative effect via any number of
processes that are not explicitly specified in the model.) The graph also implies that there is
no confounding: Since there is no arrow running from another variable in the graph to 𝐼 , 𝐼 is
modeled as a root node.

The lower level graph thus has two exogenous, 𝜃 nodes that will be relevant to assessing causal
effects: 𝜃𝑀 and 𝜃𝐷𝑙𝑜𝑤𝑒𝑟 . 𝜃𝑀 , capturing 𝐼 ’s effect on 𝑀 , ranges across the usual four values for
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Inequality (I)

Mobilization (M)

Democratization (D)

θDlowerθM International pressure (P)

A lower level model of democratization

Figure 8.2: A lower level model of democratization in which inequality may affect regime type
both directly and through mobilization of the lower classes and international pres-
sure may also affect regime type.
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a single-cause, binary setup: 𝜃𝑀
00, 𝜃𝑀

01, 𝜃𝑀
10, and 𝜃𝑀

11.

Node 𝜃𝐷𝑙𝑜𝑤𝑒𝑟 is considerably more complicated, however, because this node represents 𝐷’s
response to three causal variables: 𝐼 , 𝑀 , and 𝑃 . One way to put this is that the values of
𝜃𝐷𝑙𝑜𝑤𝑒𝑟 indicate how inequality’s direct effect will depend on mobilization (and how mobiliza-
tion’s effect will depend on inequality), conditional on whether or not there is international
pressure. Readers can find this more a complex notation at work within the Causal Queries
package but for the sake of readability, we do not use it here in the text.

The result is 28 = 256 possible nodal types for 𝐷. With four nodal types for 𝑀 , we thus
have 1024 possible combinations of causal effects between named variables in the lower level
graph. How do these lower level nodal types map onto the higher level nodal types that are of
interest? In other words, which combinations of lower level types represent a positive, negative,
or zero causal effect of inequality on democratization? When working with the CausalQueries
package, the software figures this out for us automatically once we define our model and our
query, but we work through the logic “by hand” here to help convey the intuition.

Ignoring 𝑃 for the moment, there are 16 ways that nodal types for 𝑀 and nodal types for
𝐷 can combine to create positive effects of 𝐼 on 𝐷. These different types involve different
combinations of direct and indirect effects. In Figure 4.5, for a similar model, we can see all 16
types in which there are overall effects, with some types producing direct effects, some indirect
effects, and some both.

Another way to think of the different classes of causal types that generate a positive effect of 𝐼
on 𝐷 is to distinguish among types according to the ways that 𝐼 affects 𝑀 . This gives us three
families of causal types: those in which overall effects are due to (or at least not disrupted by)
a positive effect of 𝐼 on 𝑀 ; those in which overall effects are due to (or not disrupted by) a
negative effect of 𝐼 on 𝑀 ; and those in which there is no effect of 𝐼 on 𝑀 at all.

To define a causal effect of 𝐼 in this setup, we need to define the “joint effect” of 𝐼 and 𝑀 as
being the effect of changing both variables simultaneously: when we both change 𝐼 from 0 to
1 and change 𝑀 in the manner in which it is changed by the change in 𝐼 . Thus, for instance,
the joint effect of 𝐼 and 𝑀 on 𝐷 is positive if, when 𝐼 has a positive effect on 𝑀 , changing
both 𝐼 and 𝑀 from 0 to 1 changes 𝐷 from 0 to 1. We can likewise refer to the joint effect of
an increase in one variable and a decrease in another. Given this definition, a positive causal
effect of inequality on democratization emerges for all of the following sets of causal types:

1. Types where I has a positive effect on M : 𝐼 has a positive effect on 𝑀 ; and 𝐼 and
𝑀 have a joint positive effect on 𝐷, when 𝑃 takes on whatever value it takes on in the
case.

2. Types where I has a negative effect on M : 𝐼 has a negative effect on 𝑀 , and 𝐼
and 𝑀 have a joint negative effect on 𝐷, when 𝑃 takes on whatever value it takes on in
the case.
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3. Types where I has no effect on M : 𝐼 has no effect on 𝑀 , and 𝐼 has a positive effect
on 𝐷, when we fix 𝑀 ’s value (at 0 or at 1), and 𝑃 at whatever value it takes on in the
case.

If we start out with a case in which inequality is high and democratization has not occurred
(or inequality is low and democratization has occurred), we will be interested in the possibility
of a negative overall effect. A negative causal effect of inequality on democratization emerges
for all of the following sets of causal types:

4. Types where I has a positive effect on M : 𝐼 has a positive effect on 𝑀 , and 𝐼 and
𝑀 have a joint negative effect on 𝐷, when 𝑃 takes on whatever value it takes on in the
case.

5. Types where I has a negative effect on M : 𝐼 has a negative effect on 𝑀 , and jointly
increasing 𝐼 while decreasing 𝑀 generates a decrease in 𝐷, when 𝑃 takes on whatever
value it takes on in the case.

6. Types where I has no effect on M : 𝐼 has no effect on 𝑀 , and 𝐼 has a negative effect
on 𝐷, when we fix 𝑀 ’s value (at 0 or at 1), and 𝑃 at whatever value it takes on in the
case.

Finally, all other response patterns yield no effect of inequality on democratization.

Thus, for a case in which 𝐼 = 𝐷 = 1, our query amounts to assessing the probability that 𝜃𝑀

and 𝜃𝐷𝑙𝑜𝑤𝑒𝑟 jointly take on values falling into conditions 1, 2, or 3. And for a case in which
𝐼 ≠ 𝐷, where we entertain the possibility of a negative effect, our query is an assessment of
the probability of conditions 4, 5, or 6 arising.

8.1.2.1 Forming Priors

We now need to express prior beliefs about the probability distribution from which values of
𝜃𝑀 and 𝜃𝐷𝑙𝑜𝑤𝑒𝑟 are drawn. We place structure on this problem by drawing a set of beliefs about
the likelihood or monotonicity of effects and interactions among variables from the theories
in Boix, Acemoglu and Robinson, and Ansell and Samuels. As a heuristic device, we weight
more heavily those propositions that are more widely shared across the three works than those
that are consistent with only one of the frameworks. We intend this part of the exercise
to be merely illustrative of how one might go about forming priors from an existing base of
knowledge; there are undoubtedly other ways in which one could do so from the inequality
and democracy literature.

Specifically, the belief that we embed in our priors about 𝜃𝑀 is:

• Monotonicity of 𝐼’s effect on 𝑀 : no negative effect: In Acemoglu and Robinson,
inequality should generally increase the chances of—and, in Boix, should never prevent—
mobilization by the poor. Only in Ansell and Samuels’ model does inequality have
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a partial downward effect on the poor’s demand for democracy insofar as improved
material welfare for the poor increases the chances of autocratic expropriation; and
this effect is countervailed by the greater redistributive gains that the poor will enjoy
under democracy as inequality rises.1 Consistent with the weight of prior theory on this
effect, in our initial run of the analysis, we rule out negative effects of 𝐼 on 𝑀 . We are
indifferent in our priors between positive and null effects and between the two types of
null effects (mobilization always occurring or never occurring, regardless of the level of
inequality). We thus set our prior on 𝜃𝑀 as: 𝑝(𝜃𝑀 = 𝜃𝑀

10) = 0.0, 𝑝(𝜃𝑀 = 𝜃𝑀
00) = 0.25,

𝑝(𝜃𝑀 = 𝜃𝑀
11) = 0.25, and 𝑝(𝜃𝑀 = 𝜃𝑀

01) = 0.5. We relax this monotonicity assumption to
account for the Ansell and Samuels logic, in a second run of the analysis.

For our prior on democracy’s responses to inequality, mobilization, and international pressure
(𝜃𝐷𝑙𝑜𝑤𝑒𝑟), we extract the following beliefs from the literature:

• Monotonicity of direct 𝐼 effect: no positive effect: In none of the three theories
does inequality promote democratization via a pathway other than via the poor’s rising
demand for it. In all three theories, inequality has a distinct negative effect on democ-
ratization via an increase in the elite’s expected losses under democracy and thus, its
willingness to repress. In Ansell and Samuels, the distribution of resources also affects
the probability of success of rebellion; thus higher inequality also reduces the prospects
for democratization by strengthening the elite’s hold on power. We thus set a zero prior
probability on all types in which 𝐼 ’s direct effect on 𝐷 is positive for any value of 𝑃 .

• Monotonicity of 𝑀 ’s effect: no negative effect: In none of the three theories does
mobilization reduce the prospects of democratization. We thus set a zero probability on
all types in which 𝑀 ’s effect on 𝐷 is negative at any value of 𝐼 or 𝑃 .

• Monotonicity of 𝑃 ’s effect: no negative effect: While international pressures are
only discussed in Haggard and Kaufman’s study, none of the studies considers the pos-
sibility that international pressures to democratize might prevent democratization that
would otherwise have occurred. We thus set a zero probability on all types in which 𝑃 ’s
effect is negative at any value of 𝐼 or 𝑀 .

This reduces the number of nodal types for 𝐷 from 256 to just 20. For all remaining allowable
types, we set flat priors.

The remaining 20 allowable types involve a rich range of possible interactions among interna-
tional pressure, inequality, and mobilization, including:

Since 𝑃 conditions the effect of 𝐼 , we must also establish a prior on the distribution of 𝑃 . Here
we again set a flat prior by setting the prior probability of 𝑃 = 1 to 0.5, implying that before

1In addition, as the industrial bourgeoisie become richer, which increases the Gini, this group faces a greater
risk of autocratic expropriation. If we consider the rising bourgeoisie’s mobilization to be mobilization
by a materially disadvantaged group, then this constitutes an additional positive effect of inequality on
mobilization.
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observing the data, we think that international pressures to democratize are present half the
time.

We show in Appendix (Section 8.3) how to form this model using the CausalQueries pack-
age.

8.1.3 Results

We can now choose nodes in addition to 𝐼 and 𝐷 to observe from the lower level model. Recall
that our query is about the joint values of 𝜃𝑀 and 𝜃𝐷𝑙𝑜𝑤𝑒𝑟 . By the logic of 𝑑−separation, we
can immediately see that both 𝑀 and 𝑃 may be informative about these nodes when 𝐷 has
already been observed. Conditional on 𝐷, both 𝑀 and 𝑃 are 𝑑−connected to both 𝜃𝑀 and
𝜃𝐷𝑙𝑜𝑤𝑒𝑟 . Let us see what we learn if we search for either mobilization of the lower classes or
international pressure or both, and find either clue, present or absent.

We consider four distinct situations corresponding to four possible combinations of inequality
and democratization values that we might be starting with. In each situation, the nature of
the query changes. Where we start with a case with low inequality and no democratization,
asking if the level of inequality caused the outcome is to ask if the lack of inequality caused
the lack of democratization. Where we have high inequality and no democratization, we want
to know if democratization was prevented by high inequality (as high inequality does in Boix’s
account). For cases in which democratization occurred, we want to know whether the lack or
presence of inequality (whichever was the case) generated the democratization.

Inference is done by applying Bayes rule to the observed data given the priors. Different
“causal types” are consistent or inconsistent with possible data observations. Conversely, the
observation of data lets us shift weight toward causal types that are consistent with the data
and away from those that are not. As a simple illustration: if we observe 𝐷 = 1 in a case,
then we would shift weight from types for which 𝐷 is always 0, given the other observed data,
to types for which 𝐷 can be 1 given the other observed data.

In coding countries’ level of inequality, we rely on Haggard and Kaufman’s coding using the
Gini coefficient from the Texas Inequality dataset and dichotomizing at the sample median. In
coding cases for democratization, we use the codings in Cheibub, Gandhi, and Vreeland (2010),
one of two measures used by Haggard and Kaufman. Our codings of the 𝑀 and 𝑃 clues come
from close readings of the country-specific transition accounts in Haggard, Kaufman, and Teo
(2012), the publicly shared qualitative dataset associated with Haggard and Kaufman (2012).
We code 𝑀 as 1 where the transition account refers to anti-government or anti-regime political
mobilization by economically disadvantaged groups, and as 0 otherwise. For international
pressure, we code 𝑃 = 0 if international pressures to democratize are not mentioned in the
transition account and 𝑃 = 1 if they are.

We plot results for 16 types of cases in Figure 8.3. In the first two columns of the figure, we
consider cases that democratized, first those with low inequality and then those with high
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Figure 8.3: Case-level inferences for whether the level of inequality caused the democratiza-
tion outcome given possible observations of mobilization and pressure (untrained
model).
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inequality. In the second two columns, we consider cases that did not democratize, those
with 𝐼 = 0 and then those with 𝐼 = 1. Within each column, each row represents a different
realization of 𝑀 and 𝑃 values.

Since Haggard and Kaufman (2012) — from which we get our 𝑀 and 𝑃 data — includes only
cases that democratized, we are only able to assign illustrative country names to the graphs
in the 𝐷 = 1 columns. In the 𝐷 = 0 columns, we represent estimates we would arrive at if we
observed the different 𝑀 and/or 𝐷 values in cases.

Within each country graph, we plot the inference we draw under different evidentiary con-
ditions. We show how confident we would be that the level of inequality caused the democ-
ratization outcome if (a) we observed only the cause and the outcome (𝐼 and 𝐷); (b) we
additionally observed either clue, the level of mobilization by disadvantaged classes or the
level of international pressure; and (c) if we observed both of these clues.

We now discuss the four columns of Figure 8.3 in turn.

8.1.3.1 𝐼 = 0, 𝐷 = 1: Low Inequality Countries that Democratized

In a case that had low inequality and had democratized, did low inequality cause democrati-
zation, as Boix’s thesis would suggest? Results for cases with 𝐼 = 0, 𝐷 = 1 are shown in the
first column of Figure 8.3. With the analyses in this column, we address the question: What
is the probability that Mexico, Taiwan, Albania, and Nicaragua democratized because they
had relatively low inequality? The first plotted point is our estimate of the probability that
low inequality was a cause of democratization when we observed only 𝐼 and 𝐷. Moving to the
right, we then plot our inferences upon observing 𝑀 only, upon observing 𝑃 only, and upon
observing 𝑀 and 𝑃 , respectively.

Upon observing only the level of inequality and the outcome of democratization in any of these
cases, we would place a 0.438 probability of inequality having been a cause. With only these
two pieces of information in hand, we reach identical inferences about the four cases since they
take on the same 𝐼 and 𝐷 values.

How do our inferences change as we gather additional clues? Let us turn first to gathering in-
formation about mobilization. By comparing the “No clues” to the “M only” point, we can see
that observing 𝑀 changes our conclusions only modestly for all of the cases. Observing mobi-
lization generally reduces our confidence in inequality’s negative effect relative to observing no
mobilization. If we observe the level of mobilization, our confidence that inequality mattered
goes up slightly (to 0.475) in Mexico and Taiwan, where mobilization did not occur, and goes
down slightly in Albania and Nicaragua (to 0.394) where mobilization did occur. 𝑀 ’s limited
informativeness derives from the nature of the question we are asking and the restrictions we
have imposed on the model. Recall that we are looking here for a negative effect of 𝐼 on 𝐷.
Given the model restrictions (no negative 𝐼 → 𝑀 or 𝑀 → 𝐷 effects), this negative effect can
only run via a direct effect, not through mobilization.
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𝑀 can nonetheless still be informative as a moderator of 𝐼 ’s direct effect. As we know, learning
about moderators tells us something about (a) how a case’s outcome responds to a causal
variable under a given context (i.e., about the nodal types operating in the case) and (b) the
context that the case is in. Thus, in the first instance, observing 𝑀 together with 𝐼 and 𝐷
helps us eliminate types inconsistent with these three data points. For example, if we see
𝑀 = 0, then we eliminate any type in which 𝐷 is 0 when 𝑀 = 0 and 𝐼 = 1, under any
value of 𝑃 . Second, we learn from observing 𝑀 about the value of 𝑀 under which 𝐷 will
be responding to 𝐼 . Now, because 𝑀 is itself potentially affected by 𝐼 , the learning here is
somewhat complicated. What we learn most directly from observing 𝑀 is the effect of 𝐼 on
𝑀 in this case. If we observe 𝑀 = 1, then we know that 𝐼 has no effect on 𝑀 in this case
(since such an effect can only be positive in this model); whereas if we observe 𝑀 = 0, 𝐼 might
or might not have a positive effect on 𝑀 . Learning about this 𝐼 → 𝑀 effect then allows us to
form a belief about how likely 𝑀 would be to be 0 versus 1 if 𝐼 changed from 0 to 1. That
is, it allows us to learn about the moderating conditions under which 𝐷 would be responding
to this change in 𝐼 (would mobilization be occurring or not)? This belief, in turn, allows us
to form a belief about how 𝐷 will respond to 𝐼 given the values of 𝜃𝐷𝑙𝑜𝑤𝑒𝑟 that are consistent
with the 𝐼, 𝑀 , and 𝐷 observations. The sum total of this learning remains quite modest, as
we can see by comparing the “M only” estimate in each 𝐼 = 0, 𝐷 = 1 graph to the “No clues”
estimate.

As we see from the third estimate plotted on each graph, the international pressure clue is
much more informative than the mobilization clue in an 𝐼 = 0, 𝐷 = 1 case. Observing the
absence of international pressure makes us much more confident in low inequality’s effect. The
reason is that international pressure is an alternative cause of democratization—a condition
that could have caused democratization regardless of the level of inequality. Observing the
presence of international pressure in a case makes it less likely for low inequality to have
caused the outcome. Once we bring this second clue into the analysis, Mexico and Taiwan
sharply part ways: seeing no international pressure in Mexico, we are now much more confident
that inequality mattered for the Mexican transition (0.667); seeing international pressure in
Taiwan, we are now substantially less confident that inequality mattered to the Taiwanese
transition (0.393). Similarly, observing 𝑃 sharply differentiates the Albanian and Nicaraguan
cases: Seeing no international pressure in the Albanian transition considerably boosts our
confidence in inequality’s causal role there ((0.571)), while observing international pressure in
the Nicaraguan transition strongly undermines our belief in an inequality effect there (0.263).

We can see from the fourth column that, if we have already observed 𝑃 , then we gain further
information from also observing 𝑀 (and likewise going from only observing 𝑀 to observing
𝑃 as well), and they generally push our inferences in the same direction. For Mexico, where
both mobilization and international pressure were absent, we become even more confident in
low inequality’s effect when we observe both than when we observe only one. In Nicaragua,
meanwhile, where both are present, we believe it even less likely that low inequality mattered
when we observe both than when we observe one. In Taiwan and Albania, where 𝑀 and 𝑃
take on different values, we see that we end up with inferences between the “M only” and the
“P only” inferences when we observe both clues.
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8.1.3.2 𝐼 = 1, 𝐷 = 1: High Inequality Countries that Democratized

Where we see both high inequality and democratization, the question is whether high inequal-
ity caused democratization via a positive effect. Considering the second column of cases in
Figure 8.3, did high inequality cause Mongolia, Sierra Leone, Paraguay, and Malawi to democ-
ratize?

Observing only the level of inequality and the democratization outcome, we would have fairly
low confidence that inequality mattered, with a belief of (0.128). Let us see what we can learn
if we also observe the level of mobilization, international pressure, or both.

𝑀 can now be highly informative since we are now looking for a positive effect of 𝐼 on 𝐷,
and a positive effect has to run through mobilization under the model restriction that rules
out positive direct effects. The observation of a lack of mobilization is most telling: High
inequality cannot have caused democratization, given our model, if inequality did not cause
mobilization to occur. There is no point in looking for international pressure since doing so
will have no effect on our beliefs. Thus, when we observe no mobilization by the masses in
Mongolia and Paraguay, we can be certain (given our model) that high inequality did not cause
democratization in these cases. Moreover, this result does not change if we also go and look
for international pressure: Neither seeing pressure nor seeing its absence shifts our posterior
away from 0. Observing 𝑃 in these two cases only matters if we have not observed 𝑀 .

If we look for mobilization and we do see it, on the other hand—as in Sierra Leone and
Malawi—we are slightly more confident that high inequality was the cause of democratization
(0.15). Moreover, if we first see 𝑀 = 1, then observing international pressure can add much
more information; and it substantially differentiates our conclusions about the causes of Sierra
Leone’s and Malawi’s transitions. Just as in an I=0, D=1 case, it is the absence of international
pressure that leaves the most “space” for inequality to have generated the democratization
outcome. When we see the absence of pressure in Sierra Leone, our confidence that high
inequality was a cause of the transition increases to 0.25; seeing pressure present in Malawi
reduces our confidence in inequality’s effect to 0.107.

We next examine causal relations for cases that did not democratize. These cases are not
included in Haggard and Kaufman (2012), and so are not labeled in the figure. However, our
model can tell us what we would believe if we also observed different clues in cases that did
not democratize.

8.1.3.2.1 𝐼 = 0, 𝐷 = 0: Low Inequality Countries that Did Not Democratize

To begin with 𝐼 = 0, 𝐷 = 0 cases, we would want to ask: Did the absence of high inequality
prevent democratization that would have otherwise occurred (as, for instance, at the left-hand
end of the Acemoglu and Robinson inverted 𝑈 -curve)?

We start based on the 𝐼 and 𝐷 values and our model, believing that there is a 0.128 chance that
low inequality prevented democratization. We then see that our beliefs shift most dramatically
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if we look for mobilization and find that it was present. The reason is the mirror image of
the reason why 𝑀 = 0 is so informative in an 𝐼 = 1, 𝐷 = 1 case: We are again looking for a
positive effect of 𝐼 on 𝐷, and such an effect has to run through the pathway mediated by 𝑀 .
So observing 𝑀 = 1 when 𝐼 = 0 must mean that 𝐼 has no effect on 𝑀 in this case, and thus
𝐼 cannot have a positive effect on 𝐷. If we do not observe mobilization when we look for it,
on the other hand, we now think it is somewhat more likely that 𝐼 = 0 caused 𝐷 = 0 since it
is still possible that high inequality could cause mobilization.

We also see that observing whether there is international pressure has a substantial effect
on our beliefs. When we observe 𝑀 = 0 (or don’t look for 𝑀 at all), the presence of in-
ternational pressure increases the likelihood that low inequality prevented democratization.
Intuitively, this is because international pressure, on average across types, has a positive effect
on democratization; so pressure’s presence creates a greater opportunity for low inequality
to counteract international pressure’s effect and prevent democratization from occurring that
otherwise would have (if there had been high inequality and the resulting mobilization).

In these cases, we see that observing 𝑀 = 0 adds almost no information if we have already
observed 𝑃 , regardless of what value 𝑃 takes on. However, seeing 𝑀 = 1 dramatically shifts
inferences even if we have already seen 𝑃 —since, by the logic above, it tells us that low
inequality could not have prevented democratization given our model. Likewise, if we have
already observed 𝑀 = 1, then there is no gain from observing 𝑃 . It is only if we go looking
for 𝑀 and see 𝑀 = 0 that 𝑃 can be potentially informative.

We can see here the outlines of a conditional clue-selection logic—in which, the value of col-
lecting information on a clue can depend on what we observe when seeking prior clues. We
elaborate on this logic in greater depth in Chapter 12.

8.1.3.2.2 𝐼 = 1, 𝐷 = 0: High Inequality Countries that Did Not Democratize

In cases with high inequality and no democratization, the question is whether high inequality
prevented democratization via a negative effect, as theorized by Boix. That negative effect
has to have operated via inequality’s direct effect on democratization since our model’s mono-
tonicity restrictions allow only positive effects via mobilization. In an 𝐼 = 1, 𝐷 = 0 case,
the consequence of observing 𝑃 is similar in direction to, but greater in magnitude than, the
consequence in the 𝐼 = 0, 𝐷 = 0 case: Seeing international pressure here greatly increases
our confidence that high inequality prevented democratization, while seeing no international
pressure moderately reduces that confidence. There is, returning to the same intuition, more
opportunity for high inequality to exert a negative effect on democratization when interna-
tional pressures are present and pushing toward democratization.

Here, however, looking for 𝑀 has a more modest effect than it does in an 𝐼 = 0, 𝐷 = 0 case.
This is because we learn nothing about the indirect pathway from 𝐼 to 𝐷 by observing 𝑀 :
As we have said, we already know from seeing high inequality and no democratization (given
our monotonicity assumptions) that any effect could not have run through the presence or
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absence of mobilization. However, 𝑀 provides some information given its role as a potential
moderator for 𝐼 ’s direct effect on 𝐷 (since 𝑀 is also pointing into 𝐷). Assuming that we have
not observed 𝑃 , we see a small downward shift in our confidence that inequality mattered if
we see no mobilization, and a small upward shift if we see mobilization.

For this set of cases, we see that 𝑀 and 𝑃 ’s respective probative value is fairly independent
of whether we have observed the other clue first or of what we found if we did.

8.1.4 Considerations: Theory Dependence

Haggard and Kaufman set out to use causal process observations to test inequality-based
theories of democratization against the experiences of “Third Wave” democratizations. Their
principal test is to examine whether they see evidence of distributive conflict in the process
of democratization, defined largely as the presence or absence of mobilization prior to the
transition. They secondarily look for other possible causes, specifically international pressure
and splits in the elite.

In interpreting the evidence, Haggard and Kaufman generally treat the absence of mobilization
as evidence against inequality-based theories of democratization as a whole (p. 7). They also
see the presence of distributive mobilization in cases with high inequality and democratization
as evidence against the causal role of inequality (p. 7). These inferences, however, seem only
loosely connected to the logic of the causal theories under examination here. Haggard and
Kaufman express concern that inequality-oriented arguments point to “cross-cutting effects”
(p. 1) of inequality, but do not systematically work through the implications of these multiple
pathways for empirical strategy.

Our analysis suggests that a systematic engagement with the underlying models can shift
the interpretation of the evidence considerably. Under the model we have formulated, where
inequality is high, the absence of mobilization in a country that democratized is indeed damn-
ing to the notion that inequality mattered. However, where inequality is low—precisely the
situation in which Boix’s theory predicts that we will see democratization—things are more
complicated. If we assume that inequality cannot prevent mobilization, then observing no mo-
bilization (in a case with low inequality that democratized) does not work against the claim
that inequality mattered for the transition; indeed, it slightly supports it, at least given what
we think is a plausible model-representation of arguments in the literature. Observing the
absence of inequality in such a case can undercut an inequality-based explanation if (and only
if) we believe it is possible that inequality might prevent mobilization that would otherwise
have occurred, a belief inconsistent with our model. Further, in cases with high inequality and
democratization, the absence of mobilization by the lower classes would be the observation
least consistent with the claim that inequality mattered. Observing mobilization, in contrast,
pushes in favor of an inequality-based explanation.

Moreover, it is striking that Haggard and Kaufman lean principally on a mediator clue, turning
to evidence of international pressure and elite splits (moderators or alternative causes) largely
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as secondary clues to identify “ambiguous” cases. As we have shown, under a plausible model
given prior theory, it is the moderator clue that is likely to be much more informative.

Of course, the model we have written down is only one possible interpretation of existing theo-
retical knowledge. It is possible that Haggard and Kaufman, and other scholars in this domain
hold beliefs that diverge from those encoded in our working model. The larger point, however,
is that our process tracing inferences will inevitably depend—and could depend greatly—on
our background knowledge of the domain under examination. Moreover, formalizing that
knowledge as a causal model can help ensure that we take that prior knowledge into account—
that the inferences we draw from new data are consistent with the knowledge we bring to the
table.

The analysis also has insights regarding case selection. Haggard and Kaufman justify their
choice of only 𝐷 = 1 cases as a strategy “designed to test a particular theory and thus rests
on the identification of the causal mechanism leading to regime change” (p. 4). Ultimately,
however, the authors seem centrally concerned with assessing whether inequality, as opposed
to something else, played a key causal role in generating the outcome. As the results above
demonstrate, however, there is nothing special about the 𝐷 = 1 cases in generating leverage
on this question. The tables for 𝐷 = 0 show that, given the model, the same clues can shift
beliefs about as much for 𝐷 = 0 as for 𝐷 = 1 cases. We leave a more detailed discussion of
this kind of issue in model-based case-selection for Chapter 13.

Finally, we emphasize that all of the inferences in this chapter depend on a model that is
constrained by theoretical insights but not one that has been systematically trained by data.
Although we are able to make many inferences using this model, given observations from a case
of interest, we have no empirical grounds to justify these inferences. In Chapter 10, we show
how this same model can be trained with broader data from multiple cases, and in Chapter 16
we illustrate how the model itself can be empirically evaluated.

8.2 Institutions and Growth

We now consider a second application, again connecting to a major debate in political economy.
This time we use the application to illustrate inference given a focus on rival explanations,
rather than mediation, and the scope for case level inference that arises specifically from
beliefs regarding unobserved confounding.

8.2.1 The Debate

Just as there exists a long-running debate about the causes of democratization, a similar macro-
level debate surrounds the causes of economic growth. Two main proposed explanations are
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geographic location and the quality of institutions. In a prominent geographic account, coun-
tries more distant from the equator experience cooler temperatures, climates less prone to dis-
ease, and other environmental benefits (Sachs 2001). The institutional argument is also quite
simple. Going back to Adam Smith, scholars have argued that protections against expropria-
tion and state abuse are key to prosperity. An important contribution by Acemoglu, Johnson,
and Robinson (2001) highlighted the difficulty of separating out cause and effect in studies of
income and institutions and argued that a plausibly exogenous feature2—settler mortality—
might usefully help disentangle the causal effects of institutions. They argue, specifically, that
colonizers constructed stronger institutions, with more robust rule of law and property rights
protections, in places that posed lower risks to settlers’ health.

Rodrik, Subramanian, and Trebbi (2004) pitted these ideas against each other (and against a
third focused on trade policy) and concluded that “institutions rule” in the sense that they
have a larger average effect. We use the Rodrik, Subramanian, and Trebbi (2004) data and
couple it with a causal model in the hopes of being able to use case evidence to address case-
level questions: Were good institutions plausibly a cause of wealth in a particular country?
Does knowing about the location of a country make us more or less confident that institutions
mattered?3

8.2.2 A Causal Model

We now construct the model. We are interested in a single outcome: economic productivity
(Y) as measured by real per capita GDP in 1995.

We have two causes of interest: rule of law (R) and distance from the equator (D). We also
include settler mortality as an instrument for institutional quality. In doing so we allow for
the possibility that institutions are not exogenous in our model, but we assume that (lower)
settler mortality has an effect on rule of law but is not related to wealth except via its effect
on rule of law.

We show again in Appendix (Section 8.3) how to form this model using the CausalQueries
package.

The model statement includes two causes for 𝑌 (𝑅 and 𝐷), and one cause for 𝑅 (𝑀) that is
otherwise unrelated to 𝑌 . In addition it allows for arbitrary confounding between 𝑅 and 𝑌 .
The model is represented graphically in Figure 8.4.

To make case-level inferences on causal effects from this model, we need informative beliefs over
causal relations. As with the last application, we will set priors based on three monotonicity

2Our usage of the term “exogenous’ ’ here differs from the usage introduced in Chapter 2. Exogeneous is used
here in the sense commonly employed by social scientists, to mean, essentially, that the variable is not a
function of the outcome or of other factors that also cause the outcome.

3In what follows we ignore that trade openness argument both for reasons of parsimony and because little
evidence was found for its importance in Rodrik, Subramanian, and Trebbi (2004).
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Figure 8.4: Institutions and growth DAG

assumptions. We return to these assumptions in Chapter 10 where we seek to use data to
inform such beliefs.

We first adopt the monotonicity assumption built into RST’s instrumental variables analysis:
that 𝑀 has a monotonic effect on 𝑅. More settler mortality never leads to greater institutional
strength. From work on geography and growth (e.g., Sachs (2001)) we adopt the assumption
that proximity to the equator does not bolster growth. The background logic is that geography
determines climate, agricultural productivity, and the ease of diffusion of important ideas and
resources from other areas. We also suppose that strong institutions do not negatively affect
national income. Few argue that weak protection of property rights is beneficial. For a
discussion of “greasing” and “sanding” arguments, see Méon and Sekkat (2005).

These restrictions dramatically reduce the number of possible nodal types. In the base model,
without any restrictions, there are 256 nodal types for 𝑌 , 4 for 𝑅, and 2 each for 𝑀 and
𝐷. Following the restrictions, there are nine nodal types for 𝑌 and three for 𝑅. Allowing
confounding, however, means that we have more parameters than nodal types; specifically, we
now have 4 × 9 = 36 parameters for 𝑌 , allowing for possible dependence between the nodal
types of 𝑌 and the four nodal types of 𝑅.

We highlight that we have imposed no assumption regarding whether 𝑅 and 𝑀 are substitutes
or complements in producing 𝑌 .
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8.2.3 Results

We first consider whether institutions caused good economic outcomes for different cases. We
then adjust the model to show how inferences can change qualitatively when patterns of
confounding are specified. Finally, we use the same model to demonstrate how a change in the
query we pose can switch which node is the causal variable of interest and which is the clue.

8.2.3.1 Basic results

We proceed in a similar manner as in the democratization example, focusing now on questions
of the form “did good institutions cause high income” and assessing how our answer changes
as we learn different facts about a case.
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Figure 8.5: Case level inferences given possible observations of distance and mortality (un-
trained model).

We report results in Figure 8.5. Each column in the figure displays cases with a particular com-
bination of economic growth and institutional quality. Within each combination, we then have
the four possible permutations of settler mortality and distance from the equator. This makes
for a total of 16 types of countries. There is a real-world example for fifteen of these, with the
sole exception being when growth is high, institutional quality is low, settler mortality is high,
and distance from the equator is high. As with the inequality and democratization application,
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we emphasize that the case-level inferences shown here are based purely on the observation
of nodes in the model and the model itself, and do not incorporate richer information about
cases that experts will surely have available to them.

Consider the cases with good growth and strong institutions, in the first column. Do good
institutions explain good economic outcomes? The first thing we notice is that observing settler
mortality rates (𝑀) makes no difference to our answer to this question. What happens to our
beliefs, however, when we observe 𝐷? As we see from comparing Brazil and the Dominican
Republic to Malaysia and Papua New Guinea, observing that a case is distant from the equator
makes us less likely to think that good economic outcomes are due to the institutions. As with
democratization, evidence consistent with one explanation of the observed outcome results in
less weight being placed on another explanation. Recall that we did not build into the model
the specific idea that the causes are substitutes for one another.

Consider next the four 𝑅 = 0, 𝑌 = 0 cases. For these cases, we ask: Did the lack of high
quality institutions cause the lack of growth? We see here that we again learn nothing from 𝑀
(regardless of distance from the equator). But, following the same alternative-cause logic that
we discussed above, we are now more likely to think that the poor economic outcomes are due
to weak institutions when we learn that a case is far from the equator—since being near the
equator could have constituted an alternative cause of low growth. We are more confident that
poor institutions were the culprit in Pakistan and Vietnam than in Suriname or Nigeria.

For the off-diagonal cases—those with 𝑌 = 1, 𝑅 = 0 and those with 𝑌 = 0, 𝑅 = 1—we have
nothing to learn from collecting additional clues since our monotonicity assumption implies,
as an a priori matter, that 𝑅 cannot have a negative effect on 𝑌 . No additional evidence can
change our posterior beliefs about that question since the nodal types that would allow for a
negative effect have been excluded from the model from the outset. This highlights just how
strong a monotonicty assumption can be for an attribution query.

Notably, observing settler mortality makes no difference to inference for any type of case. Why
is that? Looking to the graph, it is not that 𝑅 𝑑-separates 𝑀 from 𝑌 . Without confounding,
𝑅 would 𝑑-separate them;but with confounding, 𝑅 is a collider for 𝑀 and 𝑌 , meaning that
observing 𝑅 connects these two nodes. Thus, in principle, given the structure of the graph,
𝑀 has the potential to be informative about 𝜃𝑌 , that is, about 𝑅’s effect on 𝑌 . The reason
𝑀 is not informative in this instantiation of the model is that, although we have allowed for
confounding, we have given no structure to this confounding. Building in more specific beliefs
about the nature of the confounding would make a difference here.

8.2.3.2 Using Stronger Background Knowledge: Beliefs about Confounding

If we are willing to encode more specific beliefs about confounding in our model, then the
instrument, 𝑀 , can become informative about the case-level causal effect of 𝑅 on 𝑌 . In
the following example, we assume that there is a relation between the effect of 𝑀 on 𝑅 and
the effect of 𝑅 on 𝑌 : In particular, we imagine that 𝑀 = 0 is more likely to have produced
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Table 8.1: Learning from an instrument when patterns of confounding are specified: four 𝑅 =
1, 𝑌 = 1 cases.

Case M D No clues M only D only M and D Y1R1_names
Malaysia 0 0 0.703 0.785 0.826 0.88 Malaysia
Brazil 0 1 0.703 0.785 0.612 0.709 Brazil
Papua New Guinea 1 0 0.703 0.5 0.826 0.667 Papua New Guinea
Dominican Republic 1 1 0.703 0.5 0.612 0.4 Dominican Republic

𝑅 = 1 in cases where 𝑅 = 1 would make a difference to growth. Substantively, we might believe
that—where settler mortality was low—settlers were more likely to create strong institutions in
places where strong institutions would be likely to help. Thus, knowing that settlers plausibly
caused the strong institutions we observe is itself informative about the effects of institutions
on growth. In the language of the instrumental-variables literature, we can think of this as
there being stronger effects for compliers.

Under these beliefs, observing 𝑀 = 0 indicates that 𝑅 is more likely to have been selected
strategically on account of its economic effects. Conversely, learning that there was high
mortality suggests that the good institutions we observe were not due to low mortality, and
so—because selection effects are not in operation—observing the strength of institutions is less
informative about the effectiveness of institutions.

In Table 8.1, we show the results of an analysis in which we build into our model the belief
that it is very unlikely that institutions will have no effect on growth if settler mortality has
a negative effect on institutional strength.4 We report inferences here for four countries with
strong institutions and high growth. The point to take away from the table is a simple one.
Whereas 𝑀 was completely uninformative in the analyses reported in Figure 8.5, we see that
observing 𝑀 does matter here. We see that where 𝑀 = 0, observing 𝑀 leads to a slight
upward shift in the probability that 𝑅 caused 𝑌 ; where 𝑀 = 1, observing 𝑀 leads to a large
downward shift in that probability. 𝑀 remains informative for the query even if we have
already observed 𝐷.

This analysis amplifies two general, closely related points we have made elsewhere. One is
that whether or not a clue is informative for a given query cannot be read strictly from a
DAG alone. We demonstrated in Chapter 7 that a clue’s potential informativeness can be
determined from a graph. However, whether the clue is in fact informative can depend, among
other things, on the prior probabilities we place on nodal types, including on relationships of
confounding between nodal types; the observed values of other nodes; and the query we are
trying to answer. We expand on clue informativeness in Chapter 12.

The second connected point is that how much the inferential leverage we can get out of process
tracing will be shaped by the strength of the background knowledge we can bring to bear on

4Specifically, we set a 0.01 probability on a null effect of 𝑅 on 𝑌 given 𝜃𝑅
10.
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the problem—and a DAG alone is insufficient to justify process-tracing inferences. As we
saw, stipulating beliefs about the nature of the confounding turned an uninformative clue
into an informative one. More generally, as we point out in Chapter 7, to undertake single-
case process tracing, we need to begin with informative prior beliefs about which nodal types
are more likely than others. If, for instance, we had begun both process tracing exercises in
this chapter with no restrictions and flat priors over all nodal types, none of the clues would
have provided leverage on the problem. In the democratization model, if we had entered
the analysis with no prior information about whether inequality more often had positive or
negative effects on mobilization or whether mobilization more often had positive than negative
effects on democratization, then observing 𝑀 = 1 in an 𝐼 = 1, 𝐷 = 1 case would have provided
no leverage on whether 𝐼 had affected 𝑀 or 𝑀 had affected 𝐷 in the case. We need not start
with beliefs as strong as a monotonicity restriction. We can also set quantitative priors, such
as stipulating that positive 𝐼 → 𝑀 effects are twice as common as negative ones. But for
single-case process tracing to work, we have to bring to it thicker background knowledge than
a DAG alone provides.

As we show in the next two chapters, a mixed-data approach opens up other possibilities. If
we are working with a larger set of cases, then, we can begin with just a DAG, learn about
the prevalence of different nodal types from the data itself, and then return to process-trace
individual cases using this data-informed model.

8.2.3.3 Long-Run Effects

Finally, we note that although settler mortality is included in Acemoglu, Johnson, and Robin-
son (2001)’s and Rodrik, Subramanian, and Trebbi (2004)’s seminal analyses as an instrument
for studying the effect of recent institutions, the model can also be used to understand the
effects of settler mortality itself on growth. Indeed, the title Acemoglu, Johnson, and Robinson
(2001)’s paper—“The Colonial Origins of Comparative Development”—suggests an interest in
long-run processes. For a question about settler mortality’s long-run effects on growth—using
the same model—𝑅 can be thought of as a mediator of the effect of 𝑀 on 𝑌 and so serve as
a clue for answering the query.

In Table 8.2, we show the inferences we would draw about whether low mortality caused high
growth in an 𝑀 = 0, 𝑌 = 1 case, depending on what values of 𝑅 and 𝐷 we observe.

We see that the strong monotonicity assumption makes observing 𝑅 a hoop test for the propo-
sition that low mortality affected growth: We believe there is a positive probability that this
is true if we observe 𝑅 = 1 and 0 probability if 𝑅 = 0. Inferences also depend on the case’s dis-
tance from the equator. We again see a substitution logic in operation here: We have greater
confidence that low settler mortality caused high growth in countries where high growth can-
not be explained by distance from the equator than we do in countries where distance is a
viable explanation.
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Table 8.2: Inferences on whether low mortality caused high growth in an M=0, Y=1 case given
observations on distance and institutions.

Distance (D) Institutions (R) posterior
0 0 0.000
1 0 0.000
0 1 0.333
1 1 0.200

8.2.4 Considerations: Interactions between Clues

We saw in the last application that inferences from one clue were affected by data on another
clue even though the model did not specify either complementarity or confounding. So where
does this interaction come from?

The key idea is that observing 𝐷 = 1 rules out some possible types we were entertaining in
which 𝑅 makes a difference when 𝐷 = 0 (such as when either 𝑅 or 𝐷 would be sufficient)
without ruling out types in which 𝑅 does not make a difference when 𝐷 = 0 (such as cases in
which 𝑅 and 𝐷 are complements but 𝐷 = 0).

To see the logic more explicitly, imagine we had a model with 𝑋1 → 𝑌 ← 𝑋2 and flat priors
over just four possible nodal types for 𝑌 (and two for 𝑋2). We label the causal types as in
Table 8.3.

𝑋2 = 0 𝑋2 = 1
𝑋1 alone (𝜃𝑌 = 0101) 1 5
𝑋2 alone (𝜃𝑌 = 0011) 2 6
Either 𝑋1 or 𝑋2 (𝜃𝑌 = 0111) 3 7
𝑋1 and 𝑋2 jointly (𝜃𝑌 = 0001) 4 8

We are interested in whether 𝑋1 causes 𝑌 conditional perhaps on knowing 𝑋1, 𝑋2, and 𝑌 .
Table 8.4 summarizes inferences. For instance, 𝑋1 causes 𝑌 in cells 1, 3, 5, 8, and so our prior
is 50%. If we learn that 𝑋2 = 1 our prior remains at 50% (two possibilities, 5 and 8, from
four, all equally weighted).

Information
Cases consistent with
data

Subset consistent with 𝑋 = 1
causes 𝑌 = 1 Belief

None (Prior) 1, 2, 3, 4, 5, 6, 7, 8 1, 3, 5, 8 1/2
𝑋2 = 1 5, 6, 7, 8 5, 8 1/2
𝑋1 = 1, 𝑌 = 1 1, 3, 5, 6, 7, 8 1, 3, 5, 8 2/3
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Information
Cases consistent with
data

Subset consistent with 𝑋 = 1
causes 𝑌 = 1 Belief

𝑋1 = 1, 𝑌 = 1, 𝑋2 =
1

5, 6, 7, 8 5, 8 1/2

Note that comparing the last line to the second to last line of Table 8.4, observation of 𝑋2 = 1
rules out two types (1,3) in which 𝑋1 could have had a causal effect, without ruling out any
types that are consistent with the already available data, in which it does not (such as 6 or
7). The conclusion is that without information on 𝑋1 and 𝑌 , 𝑋2 can be uninformative for the
effect of 𝑋1 on 𝑌 (rows 1 and 2) but can still lead to a reduction in beliefs if 𝑋1 and 𝑌 are
known (rows 3 and 4). In some cases, it is even possible that 𝑋2 = 1 could lead you to revise
upward your belief that 𝑋1 causes 𝑌 = 1 but downward your belief that 𝑋1 caused 𝑌 = 1 in
a case in which 𝑋1 = 1 and 𝑌 = 1.5

8.3 Appendix: Forming Models in CausalQueries

The Inequality and Democratization model can be created in the CausalQueries package,
along with monotonicity restrictions, like this:

model_id_pt <-

make_model("I -> M -> D <- P; I -> D") |>
set_restrictions(c(

"(M[I=1] < M[I=0])",
"(D[I=1] > D[I=0]) | (D[M=1] < D[M=0]) | (D[P=1] < D[P=0])"))

Priors over the allowed (non-restricted) nodal types are set to be flat by default in the package.
The model summary (found by typing model_id_pt) indicates that there is 1 restricted nodal
type fo 𝑀 and 236 for 𝐷.

The institutions and growth model is formed like this:

5Returning to the table, if we were quite sure that 𝑋1 and 𝑋2 were not substitutes (and so remove cases 3
and 7), the last column would be 1/2, 2/3, 3/4, 2/3 and so 𝑋2 = 1 would lead you to increase your beliefs
in the ATE but still reduce your beliefs in POC. If we were quite sure that they were not complements
(and so remove cases 4 and 8) then 𝑋2 = 1 would lead you to reduce your beliefs in both the ATE and the
POC. Sometimes however, learning that cause 𝑋2 is present can lead you to increase your beliefs that 𝑋1
mattered even given 𝑋1 = 1, 𝑌 = 1. For instance, say you were unsure whether a case was one in which
𝑌 = 1 regardless of 𝑋1, 𝑋2 or if 𝑌 = 1 only if both 𝑋1 = 1 and 𝑋2 = 1. Your prior on causal effect is
1/4. If you learn that 𝑋1 = 1 and 𝑌 = 1, this increases to 1/3 (as you rule out the possibility of joint
determination and 𝑋2 = 0). However, if you just learn that 𝑋2 = 1, then your belief goes up to 1/2 (for
both cases where you do and do know 𝑋1 = 1 and 𝑌 = 1).
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model_rst_pt <- make_model("M -> R -> Y <- D; R <-> Y") |>
set_restrictions(c(

"(R[M=1] > R[M=0])",
"(Y[R=1] < Y[R=0]) | (Y[D=1] < Y[D=0])"))

Note that this model includes an unobserved confound. Monotonicity restrictions are again
imposed (though we relax these when we return to the model in Chapter 10).
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9 Integrated Inferences

Chapter summary

We extend the analysis from Chapter 7 to multi-case settings and demonstrate how we
can use the approach for mixed-method analysis. When analyzing multiple cases, we
update our theory from the evidence and can then use our updated theory to draw both
population- and case-level inferences. While single-case process tracing is entirely theory-
informed, mixed-data inference is thus also data-informed. The approach can integrate
information across any arbitrary mix of data structures, such as “thin” data on causes
and outcomes in many cases and “thicker” process evidence on a subset of those cases.

We now extend the approach introduced in Chapter 7 to show how we can undertake causal-
model-based causal inference using data on multiple cases.

In the single-case process-tracing setup, we start with a set of beliefs about causal effects at
each node (i.e., about the distribution of nodal types in the population) and apply those beliefs,
in combination with case-specific evidence, to the case at hand. The model itself remains static
in single-case process tracing. When we draw on data from multiple cases, in contrast, we can
use these data to update the model—to learn about the distribution of causal effects in the
population. We can then use this updated, or trained, model to answer questions about causal
relationships at the population level. We can also use this updated model at the case level—to
undertake process-tracing on a given case with a model informed by observations of a wider
set of cases. This means that, rather than the probative value of process-tracing evidence
being supported only by our theoretical assumptions, probative value can emerge from the
data itself.

Moreover, as we will show, causal models offer a powerful approach for mixing methods: that
is, for integrating information drawn from different kinds of data strategies. We can readily
update a causal model with a dataset that includes, for instance, data on only the explanatory
variable and the outcome for a large set of cases and intensive data on causal processes for a
subset of those cases.

We start the chapter with a conceptual point: As we demonstrate in the next section, the in-
ferential logic introduced in Chapter 7 for single-case analysis can be used as is for multi-case
analysis. Thus, the conceptual work for mixed-methods inference from causal models has, in
a sense, been done already. We then show how we can deploy the same machinery, under
assumptions regarding independence across cases, to learn about general causal processes. We
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explore the main payoffs of the approach: the ways in which it allows us to mix methods, inte-
grate population- and case-level inference, and learn about causality in the absence of causal
identification. And then, in the chapter’s final section, we illustrate several ways in which
the baseline approach can be extended—to the analysis of nonbinary data and to modeling
measurement error and spillovers.

9.1 From One Unit to Many

Conceptualized correctly, there is no deep difference between the logic of inference used in
single-case and in multi-case studies. To be clear, our claim here is not that any single “case”
can be disaggregated into many “cases,” thereby allowing for large-𝑛 analysis of single units
(King, Keohane, and Verba 1994). Our point is, rather, the opposite: Fundamentally, model-
based inference always involves comparing a pattern of data with the logic of the model.
Studies with multiple cases can, in fact, be conceptualized as single-case studies: We always
draw our inferences from a single collection of clues, whether those clues have come from one
or from many units.

In practice, when we move from a causal model with one observation to a causal model with
multiple observations, we can use the structure we introduced in Chapter 7 by simply replacing
nodes that have a single value (i.e., scalars) with nodes containing multiple values (i.e., vectors)
drawn from multiple cases. We then make inferences about causal relations between nodes
from observation of the values of multiple nodes’ vectors.

To illustrate, consider the following situation. Suppose that our model includes a binary
treatment, 𝑋, assigned to 1 with probability 0.5; an outcome, 𝑌 ; and a third “clue” variable,
𝐾, all observable. We posit an unobserved variable 𝜃𝑌 , representing 𝑌 ’s nodal type, with 𝜃𝑌

taking on values in {𝑎, 𝑏, 𝑐, 𝑑} with equal probability. (We interpret the types in {𝑎, 𝑏, 𝑐, 𝑑} as
defined in Section 2.1.) In addition to pointing into 𝑌 , moreover, 𝜃𝑌 affects 𝐾—in a rather
convenient way. In particular, 𝐾 = 1 whenever 𝑋 has an effect on 𝑌 , while 𝐾 = 1 with a
50% probability otherwise. In other words, our clue 𝐾 is informative about 𝜃𝑌 , a unit’s nodal
type for 𝑌 . As familiar from Chapter 7 and Chapter 8, when we observe 𝐾 in a case, we can
update on 𝑋’s effect on 𝑌 within the case since that 𝐾 value will have different likelihoods
under different values of 𝜃𝑌 .

So far, we have described the problem at the unit level. Let’s now consider a two-case version
of this setup. We do this by exchanging scalar nodes for vectors:

• We have a treatment node, X, that can take on one of four values, (0, 0), (0, 1), (1, 0), (1, 1)
with equal probability. The value (0,0) simply means that 𝑋 = 0 in both cases; the value
(0,1) means that 𝑋 is 0 in the first case and 1 in the second case; and so on.

• �𝑌 is now also a vector with two elements, one for each case. �𝑌 can thus take on one of
16 values (𝑎, 𝑎), (𝑎, 𝑏), … , (𝑑, 𝑑). We interpret 𝜃𝑌 = (𝑎, 𝑏), for instance, to mean that 𝑌 ’s
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nodal type is 𝑎 for the first case and 𝑏 for the second case. Let us set a uniform prior
distribution over these 16 possible values.

• Y is a vector that is generated by �𝑌 and X in an obvious way. For instance, X =
(0, 0), 𝜃𝑌 = (𝑎, 𝑏) generate outcomes Y = (1, 0).

• The vector K has the same domain as X and Y. Consistent with the setup above, for
any case 𝑗, the element 𝐾𝑗 = 1 with probability 1.0 if �𝑌𝑗 = 𝑏 and with probability 0.5 if
�𝑌𝑗 ≠ 𝑏.

Now consider a causal estimand. In a single-case setup, we might ask whether 𝑋 has an effect
on 𝑌 in the case. For a multi-case setup, we might ask what the Sample Average Treatment
Effect (SATE), 𝜏 , is. Note a subtle difference in the nature of the answers we seek in these
two situations. In the first (single-case) instance, our estimand is binary—of the form: “Is
the case a 𝑏 type?”—and our answer is a probability. In multi-case estimation of the SATE,
our estimand is categorical, and our answer will be a probability distribution: We are asking,
“what is the probability that 𝜏 is 0.5?,” “What is the probability that 𝜏 is 0.5?,” and so on.

While the estimand shifts, we can use the tools introduced for single-case process tracing in
Chapters Chapter 7 and Chapter 8 to analyze these data from multiple cases. Consider the
probability that 𝜏 = 1. A SATE of 1 would require that 𝑋 have a positive effect on 𝑌 in both
cases, that is, that 𝜃𝑌 = (𝑏, 𝑏). Under our uniform priors, this has just a 1 in 16 probability.

Now suppose that we observe that, for both units, 𝑋 = 1 and 𝑌 = 1. This data pattern is
consistent with only four possible 𝜃 vectors: (𝑏, 𝑏), (𝑑, 𝑑), (𝑏, 𝑑), and (𝑑, 𝑏). Moreover, each of
these four is equally likely to produce the data pattern we see, though only one of them gets
us 𝜏 = 1. So our belief that 𝜏 = 1 now shifts from 1 in 16 to 1 in 4.

Next, suppose that we further look at 𝐾 in both cases and observe the data pattern K = (1, 1).
The probability of this pattern for 𝜃 vector (𝑏, 𝑏) (𝜏 = 1) is 1. For the other three possible type
vectors (𝑑, 𝑑), (𝑏, 𝑑), (𝑑, 𝑏), the probability of this K pattern is 0.25, 0.5, and 0.5, respectively.
We apply Bayes’ rule now simply by dividing the probability of observing the 𝐾 data pattern
if the hypothesis (𝜏 = 1) is true by the (unnormalized) sum of the probabilities of the 𝐾 data
pattern for all four 𝜃 vectors consistent with 𝑋 = 1, 𝑌 = 1: so 1/(1+0.25+0.5+0.5) = 4/9.

We can similarly figure out the posterior probability on any possible value of 𝜏 and build up a
full posterior distribution. And we can do so given any 𝐾 pattern (i.e., K realization) across
the cases. Thus, if we observe K = (0, 1), the probability of this pattern for type vector (𝑏, 𝑏)
(𝜏 = 1) is 0. For the type vectors (𝑑, 𝑑), (𝑏, 𝑑), (𝑑, 𝑏), it is 0.25, 0, 0.5, respectively. Table 9.1
shows the posterior distribution over a set of discrete SATE values given different 𝐾 patterns
observed.
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Table 9.1: Bayesian inferences for Sample Average Treatment Effects given different data pat-
terns across two cases.

𝑋
pattern

𝑌
pattern

𝐾
pattern 𝜏 = −1 𝜏 = −.5 𝜏 = 0 𝜏 = .5 𝜏 = 1

(1,1) (1,1) (1,1) 0 0 1/9 4/9 4/9
(1,1) (1,1) (1,0) 0 0 1/3 2/3 0
(1,1) (1,1) (0,0) 0 0 1 0 0

The conceptual point is that the general logic of inference with multiple units is the same as
that with one unit. In both situations, we work out the likelihood of any given data pattern
for each possible set of values of model parameters, and then update our beliefs about those
parameters accordingly. From our posterior distribution over fundamental model parameters,
we can then derive a posterior distribution over the possible answers to any causal query, such
as the values of 𝜏 .

X = (X1, X2)

Y = (Y1, Y2)

M = (M1, M2)

Figure 9.1: Multiple units as vector valued nodes on a single DAG.

However, while conceptually simple, thinking of nodes on a DAG as representing outcomes for
all units implies models of extraordinary complexity, whose complexity rises rapidly with the
number of cases. For instance, consider the model in Figure 9.1 in which 𝑋 = (𝑋1, 𝑋2) has a
direct effect on 𝑌 = (𝑌1, 𝑌2) as well as an indirect effect via 𝑀 = (𝑀1, 𝑀2). The implied 𝜃𝑋

vector has four possible values. The 𝜃𝑀 vector has 44 = 256 possibilities, and 𝜃𝑌 has 44×4 =
4,294,967,296. Together, this means about 5 billion causal types for just two binary units. The
mind boggles.

Fortunately, we can use a different approach.

9.2 General Procedure

To illustrate the logical parallel between single-case and multi-case inference, we have worked
through a problem of sample-level inference: In the last section, we imagined that we were
trying to estimate the causal effect for the specific set of cases that we were observing. However,
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for the remainder of this chapter, and for the rest of the book, when we discuss multi-case
analysis, we will set our sights primarily on learning about models that describe realizations
of general processes. That is, we will seek to learn about populations. We will then use our
updated, general models at two levels: To address queries about the population and to address
queries about specific cases. This means that we will bracket sample-level inference: That is,
studying a set of cases in order to estimate some causal quantity for that sample. It is entirely
possible to pose sample-level queries within the framework, but this will not be our focus.

There are two reasons motivating our focus on general models applicable to a population. The
first is that we are interested in learning across cases. Our strategy for learning across cases
is to learn about population-level parameters. We will use data on a set of cases to update
our beliefs about a general model that we think is of relevance for other cases drawn from the
same population.

The second reason for structuring learning around populations is more practical. If we can
think of units as draws from a large population, and then invoke independence assumptions
across types, then we can greatly reduce the kind of complexity we discussed at the end of
the last section. In the two-case example above, the vector 𝜃𝑌 could take on any of 16 values
((𝑎, 𝑎), (𝑎, 𝑏), … (𝑑, 𝑑)). In any given case, however, 𝜃𝑌 can take on only four possible values
({𝑎, 𝑏, 𝑐, 𝑑}). So here is the simplifying move we make: Rather than trying to learn about the
probabilities of 16 possible vector values for the two cases we’re studying (or of the 1,048,576
values for 10 cases), we instead turn this into a problem of learning about how the population
is divvied up among just four nodal types. And if we know about the relative proportions of
these types in a population, we are then in a position to estimate the probability that any case
drawn from this population is of a given type.

Thinking about inference in this way simplifies the problem by greatly reducing the parameter
space, but we do not get this payoff for free. It requires invoking the assumption that (potential)
outcomes in one unit are independent of (potential) outcomes in all other units. If we cannot
stand by that assumption, then we will need to build independence failures into our models,
in ways we discuss later in this chapter.

As we move to population-level inference, we will continue to use simple DAGs to describe
causal structures. When working with populations, however, we will now think of a DAG as
standing in for a more complex multi-case structure. We can think of each individual unit
as having an identical unit-level DAG and as being connected to one another via nodes that
are common across the population. Figure 9.2 illustrates (see also Figure 3 in Chickering
and Pearl (1996) for an example of a similar graph for a DAG with unobserved confounding).
Here we replicate, twice, a simple unit-level DAG involving direct effects from 𝑋 to 𝑌 as
well as indirect effects via 𝑀 . We now subscript the unit-level substantive nodes to indicate
the different values they can take on for each of the two units. Each unit also has separate,
subscripted 𝜃 terms, implying that nodal types can vary across units, too. The unit-level 𝜃
terms are linked, however, through dependence on common 𝜆s, representing for each node
the population-level shares of its nodal types. Thus, since 𝜆𝑋 represents the population-level
distribution of 𝜃𝑋, 𝜆𝑋 matters for the values that both 𝜃𝑋1 and 𝜃𝑋2 will take on and in turn,
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for the values that 𝑋1 and 𝑋2 will take on. We conceptualize the relationships similarly for
the other nodes.

Critically, we can deploy the principles of conditional independence on a DAG, explored in
Chapter 7, to articulate how we can learn about one case from another. We can learn about
𝜃𝑀2 and about 𝑀2 from observing 𝑀1, for instance, because they are all descendants of the
population-level node 𝜆𝑀—and we know that information flows across a “forked path.” The
DAG elucidates less obvious possibilities, too. For instance, we can learn about 𝜃𝑌2 from
observing 𝑀1 if we also know 𝑌1, since 𝑌1 acts as a collider for 𝑀1 and 𝜆𝑌 ; thus, observing 𝑌1
opens a path between 𝑀1 and 𝜃𝑌2 .1 Moreover, all of this cross-case learning depends on the 𝜆s
being (at least somewhat) unknown: If the 𝜆s are known, then the path between unit DAGs
is blocked, so there can be no learning across cases. Put more intuitively, we can transfer
knowledge across cases if we can learn from (some) cases about a population to which other
cases also belong—and this strategy depends on the fact that we don’t already know all there
is to know about the population.

We now outline the general procedure for multi-case inference. The core steps in this procedure
are:

• to figure out all possible causal types implied by a DAG
• to describe a set of distributions over these causal types
• for any distribution over causal types, figure out the likelihood of any data pattern.

With this likelihood in hand, we have enough to update our beliefs over distributions of causal
types once we encounter the data. With updated beliefs about the distribution of causal
types, we are ready, in turn, to pose any causal query of interest. This procedure can be seen
as a generalization of the analysis used in Chickering and Pearl (1996) to study compliance.
We use the same basic logic here, but now for arbitrary DAGs, data structures, and queries.
Appendix shows how to implement all steps in code and provides a replication of the analysis
in Chickering and Pearl (1996).

9.2.1 Setup

We now describe the procedure in more detail. The key steps are as follows.

1. A DAG. As with process tracing, we begin with a graphical causal model specify-
ing possible causal linkages between nodes. Our “chain” model for instance has DAG:
𝑋 → 𝑀 → 𝑌 . As described above, we now imagine this DAG standing in for a larger
(“extended”) DAG in which this DAG is replicated for each unit and connected to other
unit DAGs by population-level parameters (𝜆s).

1A final subtlety that we discuss later is that, with this larger structure, the DAG for a single case (e.g. 𝑋1 →
𝑀1 → 𝑌1 ← 𝑀1) can be extracted as is from this larger DAG provided that we condition on the 𝜆s (or the
𝜃s ) or the 𝜆s are independent of each other, as here. If the 𝜆s are not independent of each other then the
DAG no longer captures all relations of conditional independence.
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Figure 9.2: A population DAG with multiple units from the same population
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2. Nodal types. Just as in process tracing, the DAG and variable ranges define the set of
possible nodal types in the model—the possible ways in which each variable is assigned
(if a root node) or determined by its parents (otherwise). For the 𝑋 → 𝑀 → 𝑌 model,
there are two types for 𝜃𝑋, four for 𝜃𝑀 , and four for 𝜃𝑌 .

3. Causal types. A full set of nodal types gives rise to a full set of causal types, encom-
passing all possible combinations of nodal types across all nodes in the model. We let 𝜃
denote an arbitrary causal type. For an 𝑋 → 𝑀 → 𝑌 model, one possible causal type
would be 𝜃 = (𝜃𝑋

1 , 𝜃𝑀
01, 𝜃𝑌

01).
4. Parameters. As before, we use 𝜆𝑗 to denote the population shares of the elements of

𝜃𝑗 (the nodal types) for a given node, 𝑗. Recall that in process tracing, we sought to
learn about 𝜃, and our priors were given by 𝜆. When we shift to multi-case inference,
𝜆 becomes the parameter we want to learn about: we seek to learn about the shares of
types in a population (or, equivalently, about the probability of different types arising
in cases drawn from that population).

5. Priors. In the process tracing setup, we treat 𝜆 as given: We do not seek to learn
about 𝜆, and uncertainty over 𝜆 plays no role. When we get to observe data on multiple
cases, however, we have the opportunity to learn both about the cases at hand and about
the population. Moreover, our level of uncertainty about population-level parameters
will shape our inferences. We thus want our parameters (the 𝜆’s) to be drawn from a
prior distribution — a distribution that expresses our uncertainty and over which we
can update once we see the data. While different distributions may be appropriate to
the task in general, uncertainty over proportions (of cases, events, etc.) falling into a
set of discrete categories is usefully described by a Dirichlet distribution, as discussed
in Chapter 5. Recall that the parameters of a Dirichlet distribution (the 𝛼’s) can be
thought of as conveying both the relative expected proportions in each category and our
degree of uncertainty.

With some abuse of graphical representation—we illustrate for only one replicate of the unit-
level DAG—Figure 9.3 displays the relationship between the case and population levels, to-
gether with an indication of distributions on different quantities.

• 𝜃 denotes the case-level type with a categorical distribution. That distribution is de-
scribed by the parameter vector 𝜆.

• 𝜆 denotes the population-level shares of types. Uncertainty over 𝜆 itself is characterized
by a Dirichlet distribution, described by parameter vector 𝛼.

• 𝛼 captures our priors on the distribution of 𝜆; in “multilevel” applications we might
think of the 𝛼 terms as parameters that we want to learn about, in which case we should
provide a prior for 𝛼.2

2As discussed in Section 11.4, if we want to model heterogeneity across different populations we might use
the Dirichlet distribution to capture the variation in 𝜆 across populations (rather than our uncertainty over
𝜆). The 𝛼 terms then become parameters that we want to learn about, and we need to provide a prior
distribution for these, captured, perhaps, by an inverse Gamma distribution.
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9.2.2 Inference

Inference then works by figuring out the probability of the data given different possible pa-
rameter vectors, 𝜆s, and then applying Bayes rule. In practice, we proceed as follows.

9.2.2.1 Distributions over Causal Types

We first need to characterize our beliefs over causal types given any possible parameter vector,
𝜆. Imagine a draw of one possible value of 𝜆 from the prior. This 𝜆 vector implies a set of nodal
type shares for all nodes. That set of nodal type shares implies, in turn, a distribution over
causal types (𝜃), which are just combinations of nodal types. If nodal types are independent of
each other, then causal type shares are a simple matter of multiplying nodal-type shares. For
instance, the probability of causal type 𝜃 = (𝜃𝑋

1 , 𝜃𝑀
01, 𝜃𝑌

01) is simply 𝑝(𝜃|𝜆) = 𝜆𝑋
1 𝜆𝑀

01𝜆𝑌
01. More

generally:

𝑝(𝜃|𝜆) = ∏
𝑘,𝑗∶𝜃𝑗

𝑘∈𝜃
𝜆𝑗

𝑘

9.2.2.2 Data Probabilities

Each causal type, in turn, implies a single data realization or data type. For instance, 𝜃 =
(𝜃𝑋

1 , 𝜃𝑀
01, 𝜃𝑌

01) implies data 𝑋 = 1, 𝑀 = 1, 𝑌 = 1 (and only that data type). Let 𝐷(𝜃) denote
the data type implied by causal type 𝜃.

A single data type, however, may be implied by multiple causal types. We use Θ(𝑑) to denote
the set of causal types that imply a given data type:

Θ(𝑑) = {𝜃|𝐷(𝜃) = 𝑑}

Let 𝑤𝑑 be the probability of a given data type 𝑑 (the “event probability”). The probability of
a given data type is the sum of the probabilities of all causal types that imply it (given 𝜆). So
we have:

𝑤𝑑 = ∑
𝜃∈Θ(𝑑)

𝑝(𝜃|𝜆)

We use w to denote the vector of event probabilities over all possible data types.

To illustrate, a data type 𝑑 = (𝑋 = 1, 𝑀 = 1, 𝑌 = 1) is consistent with four different causal
types in the 𝑋 → 𝑀 → 𝑌 model: Θ(𝑑) = {(𝜃𝑋

0 , 𝜃𝑀
01, 𝜃𝑌

01), (𝜃𝑋
0 , 𝜃𝑀

11, 𝜃𝑌
01), (𝜃𝑋

0 , 𝜃𝑀
01, 𝜃𝑌

11), (𝜃𝑋
0 , 𝜃𝑀

11, 𝜃𝑌
11)}.
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X
Y

M

θX

θM(x)

θY(x,m)

θX
θY

θM

θX~ Categorical(λX)

θY~ Categorical(λY)

λX
λY

λM

λX~ Dirichlet(αX)

λY~ Dirichlet(αY)

αX
αY

αM

αX~ InvGamma(1,1)

αY~ InvGamma(1,1)

αM~ InvGamma(1,1)

Figure 9.3: Types parameters and priors
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The probability of the data type is then calculated by summing up the probabilities of each
causal type that implies the event. We can write this as: 𝑤111 ∶= 𝜆𝑋

1 (𝜆𝑀
01 + 𝜆𝑀

11))(𝜆𝑌
01 + 𝜆𝑌

11).
In practice, calculating the full w vector is made easier by the construction of an “ambiguities
matrix,” just as for process tracing, which tells us which causal types are consistent with
a particular data type, as well as a “parameter matrix,” which tells us which parameters
determine the probability of a causal type.

We use Tables Table 9.2 and Table 9.3 to illustrate how to calculate the event probability for
each data type for a given parameter vector 𝜆, here using a simple 𝑋 → 𝑌 model. Starting with
data type 𝑋 = 0, 𝑌 = 0 (first column of the ambiguities matrix), we see that the consistent
causal types are (𝜃𝑋

0 , 𝜃𝑌
00) and (𝜃𝑋

0 , 𝜃𝑌
01), in rows 1 and 5. We then turn to columns 1 and 5 of

the parameter matrix to read off the probability of each of these causal types—which, for each,
is given by the probability of the nodal types out of which it is formed. So for 𝜃𝑋

0 , 𝜃𝑌
00, the

probability is 0.4 × 0.3, and for 𝜃𝑋
0 , 𝜃𝑌

01, the probability is 0.4 × 0.2—giving a total probability
of 0.2 for the 𝑋 = 0, 𝑌 = 0 data event. All four event probabilities, for the four possible data
types, are then calculated in the same way.

In practice, within the CausalQueries package, these calculations are done using matrix
operations.

Table 9.2: An ambiguities matrix for a simple 𝑋 → 𝑌 model (with no unobserved confounding).
Row labels indicate causal types, column labels indicate data types.

X0Y0 X1Y0 X0Y1 X1Y1
X0Y00 1 0 0 0
X1Y00 0 1 0 0
X0Y10 0 0 1 0
X1Y10 0 1 0 0
X0Y01 1 0 0 0
X1Y01 0 0 0 1
X0Y11 0 0 1 0
X1Y11 0 0 0 1

Table 9.3: A parameter matrix for a simple 𝑋 → 𝑌 model (with no unobserved confounding),
indicating a single draw of 𝜆 values from the prior distribution.

X0.Y00 X1.Y00 X0.Y10 X1.Y10 X0.Y01 X1.Y01 X0.Y11 X1.Y11 𝜆
X.0 1 0 1 0 1 0 1 0 0.4
X.1 0 1 0 1 0 1 0 1 0.6
Y.00 1 1 0 0 0 0 0 0 0.3
Y.10 0 0 1 1 0 0 0 0 0.2
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Table 9.3: A parameter matrix for a simple 𝑋 → 𝑌 model (with no unobserved confounding),
indicating a single draw of 𝜆 values from the prior distribution.

X0.Y00 X1.Y00 X0.Y10 X1.Y10 X0.Y01 X1.Y01 X0.Y11 X1.Y11 𝜆
Y.01 0 0 0 0 1 1 0 0 0.2
Y.11 0 0 0 0 0 0 1 1 0.3

9.2.2.3 Likelihood

Now we know the probability of observing each data pattern in a single case given 𝜆. We can
use these case-level event probabilities to aggregate up to the likelihood of observing a data
pattern across multiple cases (given 𝜆). For this aggregation, we make use of an independence
assumption: that each unit is independently drawn from a common population-level distribu-
tion. Doing so lets us move from a categorical distribution that gives the probability that a
single case has a particular data type to a multinomial distribution that gives the probability
of seeing an arbitrary data pattern across any number of cases.

Specifically, with discrete variables, we can think of a given multiple-case data pattern simply
as a set of counts across categories. This allows us to represent a multi-case data pattern
in compact form. For, say, 𝑋, 𝑌 data, we will observe a certain number of 𝑋 = 0, 𝑌 = 0
cases (which we notate as 𝑛00), a certain number of 𝑋 = 1, 𝑌 = 0 cases (𝑛10), a certain
number of 𝑋 = 0, 𝑌 = 1 cases (𝑛01), and a certain number of 𝑋 = 1, 𝑌 = 1 cases (𝑛11).
A data pattern, given a particular set of variables observed (a search strategy), thus has a
multinomial distribution. The likelihood of a data pattern under a given search strategy, in
turn, takes the form of a multinomial distribution conditional on the number of cases observed,
𝑛, and the probability of each data type, given a particular 𝜆. More formally, we write:

𝐷 ∼ Multinomial(𝑛, 𝑤(𝜆))

To illustrate, for a three-node model, with 𝑋, 𝑌 , and 𝑀—all binary—let 𝑛𝑋𝑌 𝑀 denote an eight-
element vector recording the number of cases in a sample displaying each possible combination
of 𝑋, 𝑌 , 𝑀 data. Thus, the data 𝑑 can be summarized with a vector of counts of the form
n𝑋𝑌 𝑀 ∶= (𝑛000, 𝑛001, 𝑛100, … , 𝑛111). The elements of 𝑛𝑋𝑌 𝑀 sum to 𝑛, the total number of
cases studied. Likewise, let the event probabilities for data types given 𝜆 be registered in a
vector, 𝑤𝑋𝑌 𝑀 = (𝑤000, 𝑤001, 𝑤100, … , 𝑤111). The likelihood of a data pattern, 𝑑, given 𝜆 is
then:

𝑝(𝑑|𝜆) = 𝑝(𝑛𝑋𝑌 𝑀 |𝜆) = Multinom (𝑛𝑋𝑌 𝑀 | ∑ 𝑛𝑋𝑌 𝑀 , 𝑤𝑋𝑌 𝑀(𝜆))
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9.2.2.4 Estimation

We now have all the components for updating on 𝜆. Applying Bayes rule (see Chapter 5), we
have:

𝑝(𝜆|𝑑) = 𝑝(𝑑|𝜆)𝑝(𝜆)
∫𝜆′ 𝑝(𝑑|𝜆′)𝑝(𝜆′)

In the CausalQueries package this updating is implemented in stan, and the result of the
updating is a dataframe that contains a collection of draws from the posterior distribution for
𝜆. Table 9.4 illustrates what such a dataframe might look like for an 𝑋 → 𝑀 → 𝑌 model.
Each row represents a single draw from the posterior distribution, 𝑝(𝜆|𝑑). The 10 columns
correspond to the model’s 10 parameters: Each draw from 𝜆’s posterior distribution contains
a set of population-level shares for each of the 10 nodal types in the model.

So, for instance, in the first row, we have one draw from our posterior distribution over 𝜆.
In this draw, we have a world in which the shares of cases with nodal types 𝜃𝑋

0 and 𝜃𝑋
1 are

47% and 53%, respectively; the shares with 𝜃𝑀
00, 𝜃𝑀

10, 𝜃𝑀
01, and 𝜃𝑀

11 are 21%, 7%, 17%, and 55%,
respectively; and the shares for 𝜃𝑌

00, 𝜃𝑌
10, 𝜃𝑌

01, and 𝜃𝑌
11 are 20%, 23%, 15%, and 41%, respectively.

For each draw of 𝜆, these shares differ. Stan typically carries out thousands of draws to
characterize the full joint posterior distribution over all parameters.

Table 9.4: An illustration of a posterior distribution for a 𝑋 → 𝑀 → 𝑌 model. Each row is
a draw from 𝑝(𝜆|𝑑)). Such a posterior would typically have thousands of rows and
capture the full joint posterior distribution over all parameters.

X.0 X.1 M.00 M.10 M.01 M.11 Y.00 Y.10 Y.01 Y.11
0.78 0.22 0.07 0.61 0.10 0.22 0.11 0.81 0.07 0.01
0.54 0.46 0.09 0.05 0.09 0.78 0.33 0.03 0.02 0.61
0.28 0.72 0.61 0.01 0.10 0.28 0.44 0.35 0.05 0.16
0.42 0.58 0.50 0.24 0.16 0.10 0.23 0.37 0.29 0.11
0.92 0.08 0.10 0.09 0.74 0.07 0.17 0.18 0.51 0.14
0.88 0.12 0.04 0.27 0.28 0.40 0.10 0.20 0.67 0.03

9.2.2.5 Querying

Once we have generated a posterior distribution for 𝜆, we can then query that distribution.
The simplest queries relate to values of 𝜆 itself. For instance, if we are interested in the
probability that 𝑀 has a positive effect on 𝑌 , given an updated 𝑋 → 𝑀 → 𝑌 model, we want
to know about the distribution of 𝜆𝑌

01. This distribution can be read directly from column 9
(𝑌 .01) of Table 9.4.

217



More complex queries can all be described as summaries of combinations of these columns. For
instance, the query, “What is the average effect of 𝑀 on 𝑌 ” is a question about the distribution
of 𝜆𝑌

01 − 𝜆𝑌
10, which is given by the difference between columns 9 and 8 of Table 9.4. This is a

linear summary of parameters and is easily calculated.

Still more complex queries might ask about conditional quantities. Let 𝜋(𝑄|𝐷) denote the
share of cases for which 𝑄 is true, among those that have features 𝐷. For instance, we could
ask about the share of cases among those that display 𝑀 = 1, 𝑌 = 1 for which 𝑀 causes
𝑌 . The condition 𝐷 could even be a causal quantity and is not necessarily observable: For
instance, we might be interested in the share of cases among those for which 𝑀 has a positive
effect on 𝑌 for which 𝑋 also has a positive effect on 𝑀 . Though more complex, we proceed
in the same way for such “conditional queries,” calculating the value of the query for each
possible value of 𝜆 that we entertain and then taking the distribution over these values as
given by our posterior of 𝜆 itself.

Let 𝜋(𝑄|𝐷, 𝜆𝑖) denote the share of cases for which our query, 𝑄, is satisfied, among those with
condition 𝐷, given a specific parameter draw, 𝜆𝑖. This could be, for instance, the share of
cases with 𝑀 = 1, 𝑌 = 1 for which 𝑀 causes 𝑌 , under a single draw of 𝜆 from its posterior.
Similarly, let 𝜋(𝑄&𝐷|𝜆𝑖) denote the share of cases for which the query is satisfied and condition
𝐷 is present, given 𝜆𝑖. And let 𝜋(𝐷|𝜆𝑖) denote the share of cases with 𝐷 given 𝜆𝑖. Then, using
the law of conditional probability, our conditional query under a single draw 𝜆𝑖 is:

𝜋(𝑄|𝐷, 𝜆𝑖) = 𝜋(𝑄&𝐷|𝜆𝑖)
𝜋(𝐷|𝜆𝑖)

For the conditional query about the share of cases with 𝑀 = 1, 𝑌 = 1 for which 𝑀 causes 𝑌 ,
we can read this from Table 9.4 as the ratio of the second-to-last column to the sum of the
last two columns: 𝜆𝑌

01
𝜆𝑌

01+𝜆𝑌
11

.3

We then have a posterior probability distribution over the query induced by our posterior dis-
tribution over 𝜆, 𝑝(𝜆). We can calculate the expected value of our query’s posterior distribution
as:

̂𝜋(𝑄|𝐷, 𝑝) ∶= ∫ 𝜋(𝑄&𝐷|𝜆𝑖)
𝜋(𝐷|𝜆𝑖)

𝑝(𝜆𝑖)𝑑𝜆𝑖

Here, we are essentially taking a weighted average of the different answers to our query across
the different possible values of 𝜆, weighting each answer by the probability of the 𝜆𝑖 from
which it is derived.

3The calculation is simplified by the fact that the information on 𝑀 is uninformative in this chain
model. For the full calculation the denominator—the probability that 𝑀 = 1&𝑌 = 1—is (𝜆𝑋

0 𝜆𝑀
10 +

𝜆𝑋
1 𝜆𝑀

01𝜆𝑀
11)(𝜆𝑌

01 + 𝜆𝑌
11). The numerator—the probability that (𝑀 = 1)&(𝑌 = 1)&(𝑀 causes 𝑌 )—is

(𝜆𝑋
0 𝜆𝑀

10 + 𝜆𝑋
1 𝜆𝑀

01𝜆𝑀
11)(𝜆𝑌

01).
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Still, more complex queries may require keeping some nodes constant while varying others.
For instance, we might imagine the impact of a change in 𝑋 on 𝑌 while keeping constant
a mediator 𝑀 that lies on a path from 𝑋 to 𝑌 (where there is a second, direct path from
𝑋 to 𝑌 ). Complex as such queries might be, they too can be calculated as summaries of
the combinations of columns of the posterior distribution, following the rules described in
Chapter 4.

In all situations, once we have a distribution over the queries, we can calculate not just the
expected value but also quantities such as the standard deviation of our posterior or the
credibility intervals—a range of values over which 95% of our posterior probability mass lies.

9.2.2.6 Illustration

Figure 9.4 shows examples of a full mapping from data to posteriors for different data structures
and queries. We begin with a simple chain model of the form 𝑋 → 𝑀 → 𝑌 , with flat priors
over all nodal types.4 In each column, we report inferences for a different query; and in each
row, we report inferences for different data structures. For all data structures, we assume (for
the sake of illustration) that we in fact observe a perfect positive correlation between 𝑋, 𝑌 ,
and 𝑀 . However, across the rows, we vary which nodes and for how many cases we observe
data.

In the first four columns, we report queries about the shares of 𝑎, 𝑏, 𝑐, and 𝑑 types in the
population, referring to 𝑋’s effect on 𝑌 . As we discussed in defining case-level causal-effect
queries in Section 4.1, the mediation of this effect by 𝑀 means that this query is asking a
question about both 𝜆𝑀 and 𝜆𝑌 . The next three columns ask about the average effect of 𝑋
on 𝑀 , 𝑀 on 𝑌 , and 𝑋 on 𝑌 . And the final column poses a conditional query, asking for what
share of cases that display 𝑋 = 1, 𝑌 = 1 does 𝑋 have a positive effect on 𝑌 . As we can see,
two features of our posterior beliefs shift as we add data: the expected value of the query and
our degree of uncertainty.

For instance, as we go from 2 cases to 10 cases, and from just 𝑋, 𝑌 data to observing 𝑀
as well, our beliefs about the proportion of positive-effect cases (including conditional on
𝑋 = 1, 𝑌 = 1) go up, and our beliefs about the proportion of no-effect and negative-effect
cases go down—sensibly, given the strong positive correlations in the data. Interestingly, more
data does not necessarily generate less uncertainty; this is because, for some queries, the data
and our priors are pulling in opposite directions, and when we are only analyzing 10 or fewer
cases, there aren’t enough data to overwhelm our priors. Also, movements from extreme values
toward 0.5 can come with increased uncertainty. Ultimately, we can see in the last row that,
with sufficiently large amounts of data, these credibility intervals shrink, and the mean of our
posterior on the query approaches the “true” value.

4It is worth noting that the flat priors over nodal types in this chain model do not imply flat priors over the
nodal types in a reduced 𝑋 → 𝑌 model. For intuition: whereas in the simple model, flat priors imply that
there is some causal effect (positive or negative) half the time, in the chain model, a causal effect occurs
only if there are causal effects in both stages, and so, only one quarter of the time.
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M1 − M0 Y1 − Y0 Y1 − Y0 Y1 < Y0 Y1 > Y0 &(Y1 = 0, Y0 = 0) &(Y1 = 1, Y0 = 1)

−0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0

100 cases
 X, M, Y data

10 cases
 X, M, Y data

10 cases 
 X, Y data only

2 cases 
 X, M, Y data

2 cases 
 X, Y data only

No data

Belief

Figure 9.4: Posterior means and credibility intervals for a range of causal queries given different
data for a chain model.

9.2.3 Wrinkles

The basic procedure described above goes through with only minor adjustments when we have
unobserved confounding or more complex sampling processes. We describe here how to take
account of these features.

9.2.3.1 Unobserved Confounding

When there is unobserved confounding, we need parameter sets that allow for a joint distribu-
tion over nodal types. Unobserved confounding, put simply, means that there is confounding
across nodes that is not captured by edges represented on the DAG. More formally, in the
absence of unobserved confounding, we can treat the distribution of nodal types for a given
node as independent of the distribution of nodal types for every other node. Unobserved
confounding means that we believe that nodal types may be correlated across nodes. Thus,
for instance, we might believe that those units assigned to 𝑋 = 1 have different potential
outcomes for 𝑌 than those assigned to 𝑋 = 0—that is, that the probability of 𝑋 = 1 is not
independent of whether or not 𝑋 has an effect on 𝑌 . To allow for this, we have to allow
𝜃𝑋 and 𝜃𝑌 to have a joint distribution. There are different ways to do this in practice, but
a simple approach is to split the parameter set corresponding to the 𝑌 node into two: We
specify one distribution for 𝜃𝑌 when 𝑋 = 0 and a separate distribution for 𝜃𝑌 when 𝑋 = 1.
For each of these parameter sets, we specify four 𝛼 parameters representing our priors. We
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can draw 𝜆 values for these conditional nodal types from the resulting Dirichlet distributions,
as above, and can then calculate causal type probabilities in the usual way. Note that if we do
this in an 𝑋 → 𝑌 model, we have one two-dimensional Dirichlet distribution corresponding
to 𝑋 and two four-dimensional distributions corresponding to 𝑌 . In all, with 1+3+3 degrees
of freedom: Exactly the number needed to represent a joint distribution over all eight 𝜃𝑋, 𝜃𝑌

combinations.

In Figure 9.5, we represent this confounding for a model with direct and indirect effects by
indicating parameters values 𝜆𝑀𝑌 that determine the joint distribution over 𝜃𝑀 and 𝜃𝑌 .

X
Y

M

observed value: 0/1

observed value: 0/1

observed value: 0/1

θX
θY

θM

nodal type (function):fX(.)
nodal type (function): fY(x,m)

λX

λMY

Prob. of nodal type: λ0
X=Pr(θX=θ0

X)

Prob. of nodal pair =Pr(θY,θM)

αX

αMY

Prior on prob nodal type λX

Prior on prob nodal pair

Figure 9.5: Types parameters and priors with confounding

9.2.3.2 Sampling and the Likelihood Principle

When we constructed the likelihood function—the probability of observing data given model
parameters—we did not say much about how data were gathered. But surely how cases are
sampled affects the probability of seeing different types of data and so affects the likelihood
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function. Ought we have different likelihood functions, for instance, if we decided to look for
data on 𝐾 only in places in which we have already observed 𝑋 = 1 and 𝑌 = 1, or if we selected
cases in which to examine 𝐾 without taking into account known values of 𝑋 and 𝑌 ? Do we
need to take account of such details when making inference?

The answer depends on whether and how details of sampling affect the likelihood of seeing
different data patterns. In general, we can invoke the “likelihood principle,” which is the
principle that the relevant information for inference is contained in the likelihood. If sampling
strategies don’t alter the likelihood of observing data, then we can ignore them. In fact, since
what matters is the relative likelihoods, we can treat two likelihood functions as equivalent if
they are scalar multiples of each other. Thus, for instance, we can think of 𝜆𝑋𝜆𝑌 as equivalent
to 2𝜆𝑋𝜆𝑌 .

Here are two general rules of thumb:

• Strategies in which a unit’s probability of selection into a sample is not related to its
own potential outcomes can likely be ignored.

• Sampling strategies in which a unit’s probability of selection into the sample is related
to its own potential outcomes likely cannot be ignored.

To illustrate, let’s consider a set of strategies that can be treated equivalently. We imagine an
𝑋 → 𝑀 → 𝑌 model and suppose we have data on two cases: one case in which we see data on
𝑋 and 𝑌 only, observing 𝑋 = 0, 𝑌 = 0, and another in which in we have data on 𝑋, 𝑀 , and
𝑌 , observing 𝑋 = 1, 𝑀 = 0, and 𝑌 = 1. Further, let 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) denote the probability
that we find 𝑋 = 𝑥 and 𝑌 = 𝑦 when we seek data on 𝑋 and 𝑌 .

Consider now three strategies that we might have used to gather these data.

Strategy 1: Single multinomial draw. For each case, we could have randomly decided, with
equal probability, whether or not to select data on 𝑋 and 𝑌 only or on 𝑋, 𝑀 , and 𝑌 . Each
case then had 12 possible data types (4 possible 𝑋, 𝑌 data types and 8 possible 𝑋, 𝑀, 𝑌 data
types). The probability of data type 𝑋 = 0, 𝑌 = 0, for instance, is 0.5𝑃 (𝑋 = 0, 𝑌 = 0). The
probability of observing the data we do observe is then:

2 × 1
2𝑃(𝑋 = 0, 𝑌 = 0) × 1

2𝑃(𝑋 = 1, 𝑀 = 0, 𝑌 = 1)

Strategy 2. Conditional (sequential) multinomial draws.

We could have collected data on 𝑋 and 𝑌 in two cases, and we then measured 𝑀 in every case
in which we observed 𝑋 = 1, 𝑌 = 1. For this strategy, the probability of observing the data
that we do observe is the probability of observing exactly one case with 𝑋 = 1, 𝑌 = 1 and
another with 𝑋 = 0, 𝑌 = 0, times the probability of observing 𝑀 = 1 in the case in which we
observed 𝑋 = 1, 𝑌 = 1.
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2𝑃 (𝑋 = 0, 𝑌 = 0)𝑃(𝑋 = 1, 𝑌 = 1)𝑃(𝑀 = 0|𝑋 = 1, 𝑌 = 1)

which is equivalent to:

2𝑃(𝑋 = 0, 𝑌 = 0)𝑃(𝑋 = 1, 𝑀 = 0, 𝑌 = 1)

Strategy 3: Parallel multinomial draws

We could have sampled two cases and simultaneously examined 𝑋, 𝑌 in the first case and
𝑋, 𝑀, 𝑌 in the second case. The probability of seeing the data we see is then:

2𝑃(𝑋 = 0, 𝑌 = 0)𝑃(𝑋 = 1, 𝑀 = 0, 𝑌 = 1)

We can readily see that, for all three strategies, the probability of observing the data we do in
fact observe has the same form, albeit with possibly different constants. In other words, the
differences in sampling across these strategies can be ignored.

Some differences in sampling procedures do have to be taken into account, however: in partic-
ular, sampling—or more generally missingness—that is related to potential outcomes. For a
simple illustration, consider an 𝑋 → 𝑌 model where data are only recorded in cases in which
𝑌 = 1. Thus, the observed data can have variation on 𝑋 but not on 𝑌 . Naive updating that
ignored the sampling process here would lead us to infer that 𝑌 = 1 regardless of 𝑋, and thus
that 𝑋 has no effect on 𝑌 . The problem here is that the likelihood is not taking account of
the process through which cases enter our dataset.

In this situation, the correct likelihood would use event probabilities that consider the possible
data types under the strategy. Let 𝐷∗ denote the set of data types that are observable under
the strategy (here 𝐷∗ is the set of data types involving 𝑌 = 1). Then event probabilities are:

𝑤𝑑 = { 0 if 𝑑 ∉ 𝐷∗
𝑥𝑑

∑𝑑′∈𝐷∗ 𝑥𝑑′
otherwise

where 𝑥𝑑 = ∑𝜃∈Θ(𝑑) 𝑝(𝜃|𝜆) is the uncensored data event probability.

An example of such sampling is the problem discussed in Knox, Lowe, and Mummolo (2020)
where reporting of police encounters depends on the outcome of those encounters.

While this kind of sampling can sometimes be handled relatively easily,5 the general principle
holds that sampling (missingness) that is related to potential outcomes is a part of the data-
generating process and needs to be taken into account in the likelihood. On strategies for
addressing nonrandom sampling by blocking, see Bareinboim and Pearl (2016).

5Such sampling is also implemented in the CausalQueries package.
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9.3 Payoffs

The most straightforward payoff to this approach is that we can learn about causal relationships
in a population of interest from any number of cases drawn from that population. We can
then use the updated model to ask causal questions about the population of interest or about
individual cases within that population. In this section, we elaborate on three additional
things that a causal-model-based approach to multi-case causal inference allows us to do: to
integrate information from extensive and intensive data strategies; to empirically derive and
justify the probative value of our process-tracing clues; and to learn about causal relationships
even when they are not identified.

9.3.1 Mixing Methods

Having described

Having described the basic procedure, it is relatively straightforward now to explain what we
mean when we say we can use this approach to mix methods. The notion of “mixing methods”
can, of course, imply many things. What we mean in particular is that we can mix evidence
drawn from any combination of data strategies. One common mixed-method research design
in the social sciences involves combining (1) “extensive” data, meaning observations of a few
variables for a large set of cases with (2) “intensive” data, meaning more in-depth observations
for a small set of cases, usually a subset of the larger sample. The approach we have outlined
can readily handle this kind of data mixture, and this is the kind of mixed strategy we will
usually address in this book. More generally, though, as long as all data involve observations
of nodes represented in our model, the framework can handle any arbitrary mixture of data
structures.

The key features of the approach that allow for mixing are that we need neither data on all
nodes nor data on the same nodes for all cases in order to implement the procedure. Whatever
the data structure, we simply update our beliefs using whatever information we have.

The CausalQueries package will automatically perform updating on any arbitrary mixture of
data structures we provide it with, but here is the basic idea. The logic is akin to that which
we employ with partial process-tracing data (see Section 7.2.4). Suppose we have a data
strategy 𝑠 under which we gather data on 𝑛𝑠 units for a subset of nodes, 𝑉𝑠. In calculating
the probability of a pattern of partial data, we use all columns (data types) in the ambiguities
matrix that are consistent with the partial data in order to calculate the event probability 𝑤𝑠.
Our overall data strategy might involve multiple strategies like this.6 If units are randomly

6For example, data may be gathered through three strategies: 𝑆1 in which data are gathered on nodes 𝑉1
only in 𝑛1 units for; 𝑆2 in which data are gathered on nodes 𝑉2 only in 𝑛2 units; and 𝑆3 in which data are
gathered on nodes 𝑉3 only in 𝑛3 units.
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assigned to data strategies and the observed number of units for each data type under each
data strategy, 𝑠, is captured in the vector 𝑚𝑠,7 then the likelihood is:

𝐿 = ∏
𝑠

Multinom(𝑚𝑠|𝑛𝑠, 𝑤𝑠)

That is, the likelihood of a given mixed data pattern is simply the product, across strategies,
of the likelihood of observing the number of units that we observe of each possible data type
for each strategy, given the number of cases observed under each strategy and the likelihood
of each data type emerging under each strategy.

To illustrate, consider a model with nodes 𝑋, 𝑀 , and 𝑌 . Suppose we have collected 𝑋, 𝑌
data for a set of cases, and have additionally collected data on 𝑀 for a random subset of
these—akin to conducting quantitative analysis on a large sample while conducting in-depth
process tracing on part of the large-𝑁 sample. We can then summarize our data in two
vectors, an eight-element 𝑛𝑋𝑌 𝑀 vector (𝑛000, 𝑛001, … 𝑛111) for the cases with process-tracing
(𝑀) observations, and a four-element vector 𝑛𝑋𝑌 ∗ = (𝑛00∗, 𝑛10∗, 𝑛01∗, 𝑛11∗) for the partial data
on those cases on for which we did not conduct process tracing. Likewise, we now have two sets
of data probabilities: an eight-element vector for the set of cases with complete data, 𝑤𝑋𝑌 𝑀 ,
and a four-element vector for those with partial data, 𝑤𝑋𝑌 ∗.

Let 𝑛 denote the total number of cases examined, and 𝑘 the number for which we have data
on 𝑀 . Assuming that each observed case represents an independent, random draw from the
population, we form the likelihood function quite simply as:

Pr(𝒟|𝜃) = Multinom (𝑛𝑋𝑌 ∗|𝑛 − 𝑘, 𝑤𝑋𝑌 ∗) × Multinom (𝑛𝑋𝑌 𝑀 |𝑘, 𝑤𝑋𝑌 𝑀)

That is, the likelihood of observing the mixed data pattern is the likelihood of observing the
data we see in the non-process-traced cases (given the number of those cases and the event
probability for each 𝑋, 𝑌 data type) times the likelihood of observing the data we see in
the process-traced cases (given the number of those cases and the event probability for each
𝑋, 𝑀, 𝑌 data type).

9.3.2 Deriving Probative Value from the Data

In Chapter 7, we discussed the fact that a DAG by itself is often insufficient to generate
learning about causal effects from data on a single case. For many queries, a causal structure
alone cannot make nodes on the graph informative as clues about causal relations. We also
need to provide nonuniform prior beliefs about the population-level shares of nodal types.

7Specifically, 𝑚𝑠 is a vector containing, for each strategy, 𝑠, the number of observed units that are of each
data type that can possibly be observed under that strategy.
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When working with multiple cases, however, we can learn about causal relations starting with
nothing more than the DAG and data. Learning about causal relations from the data can,
in turn, generate and justify the probative value of process-tracing clues—that is, without
the researcher having to posit any beliefs about nodal-type shares. In other words, we can
simultaneously learn about population-level queries and empirically justify inferences we might
make about new cases using case-level data.

For intuition, if we start with a simple model of the form 𝑋 → 𝑌 ← 𝐾, and have flat priors
over causal types, then knowledge of 𝐾 is uninformative about whether 𝑋 caused 𝑌 in a
case. But imagine that we observe data on 𝑋, 𝐾, and 𝑌 for multiple cases and find a strong
correlation between 𝑋 and 𝑌 only when 𝐾 = 1. Now an inference that 𝑋 mattered for 𝑌
in a case after seeing 𝐾 = 1 can be justified by the updated model. That is, the model has
learned that 𝐾 is 1 more often in cases where it is likely that 𝑋 affected 𝑌 . The data plus the
DAG—without informative priors—have generated a probative value for our clue, 𝐾, which
we can then leverage for process tracing. With real data, we show an example of this kind of
learning in our multi-case analysis of the institutions and growth model in Chapter 10.

This represents a key integrative opportunity for model-based inference: A population-level
model, updated on data from multiple cases, can allow us to empirically justify the causal
inferences that we make about individual cases when we observe case-level data. To be clear,
we imagine here that we first update our model using data from multiple cases, and then bring
the updated model to an individual case—using the model to tell us what we should believe
about the case given a set of observations from that case.

9.3.2.1 Two Types of Case-Level Conditional Inferences

We must be careful, however, about what we mean by case-level inference following model-
updating. Generally speaking, case-level inference means asking about the probability that
query 𝑄 is true for a unit with observed characteristics 𝐷. For instance, we might want to
know about the probability that 𝑋 caused 𝑌 in a case with 𝑋 = 1, 𝑌 = 1, and 𝐾 = 1.
But there are two ways in which we might interpret this question and seek an answer from
an updated model. We will refer to these two similar-but-distinct types of questions as an
uninformative-case query and an informative-case query.

Uninformative-case query. With an updated model in hand, we can ask: What is the proba-
bility that 𝑄 is true for a case of interest that has characteristics 𝐷? In this setup, we have
selected the case for inference because it has characteristics 𝐷–for example, we have randomly
drawn the case from among those that have 𝐷—and we have a question about this kind of
case. If we can treat this case as undifferentiated in expectation from other units with 𝐷 in
the population, then we can treat the share of cases in the population with 𝐷 for which the
query is satisfied as the probability with which 𝑄 is true for the case of interest. Thus, if our
updated model tells us that 𝑋 causes 𝑌 for 80% of cases in the population with 𝑋 = 1, 𝑌 = 1,
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and 𝐾 = 1, then our best guess for any case with these observed features, absent other data,
is that there is an 80% probability that 𝑋 causes 𝑌 in this case.

Informative-case query. Say that instead of randomly sampling a case from among the cases
that have 𝐷, we were to randomly select a case from the population and observe that this new
case has characteristics 𝐷. Then, what should we believe about 𝑄?

Things are different now because the observation of 𝐷 in a randomly sampled case is now new
information, and this additional data may lead us to update our causal model, even as we
query it.

To calculate uninformative case queries, we make use of our posterior beliefs about the share
of units in a population that satisfy the conditional query. This is quantity 𝜋(𝑄|𝐷, 𝑝) that
we discussed in Section 9.2.2.5, where 𝑝 now is our posterior distribution over 𝜆. We use
the expected value of this posterior distribution over the conditional query to answer the
uninformative case query:

̂𝜋(𝑄|𝐷, 𝑝) ∶= ∫ 𝜋(𝑄&𝐷|𝜆𝑖)
𝜋(𝐷|𝜆𝑖)

𝑝(𝜆𝑖)𝑑𝜆𝑖

For the informative case query—what should we believe about 𝑄 for a randomly selected case
in which we observe 𝐷—we need to take into account the new information that 𝐷’s observation
represents. That is, we need to allow for updating on our posterior distribution over 𝜆 given
the new observation. We thus use the law of conditional probability to calculate:

̂𝜙(𝑄|𝐷, 𝑝) ∶= ∫ Pr(𝑄&𝐷|𝜆𝑖)𝑝(𝜆𝑖)𝑑𝜆𝑖
∫ Pr(𝐷|𝜆𝑖)𝑝(𝜆𝑖)𝑑𝜆𝑖

= ∫ 𝜋(𝑄&𝐷|𝜆𝑖)𝑝(𝜆𝑖)𝑑𝜆𝑖
∫ 𝜋(𝐷|𝜆𝑖)𝑝(𝜆𝑖)𝑑𝜆𝑖

Note we have made use of the fact that for a single case Pr(𝑄&𝐷|𝜆𝑖) = 𝜋(𝑄&𝐷|𝜆𝑖).
In this calculation, we have a value for 𝜋(𝑄&𝐷) for each possible 𝜆𝑖, as in the uninformative-
case query. The key difference is that observing 𝐷 can now lead us to shift probability toward
those 𝜆𝑖’s under which the observation of 𝐷 was more likely to occur—and in turn toward
those answers to our query (those 𝜋(𝑄&𝐷) values) implied by those now-more-probable 𝜆𝑖’s.
Put differently, in an informative-case query, the case-level data do not just give us information
about the kind of case we’re examining; they can also provide new information about the way
causal relations operate in the world we’re in (i.e., about 𝜆), informing how we interpret the
evidence we see in the case.

Formally, ̂𝜙 and ̂𝜋 look quite similar, and the differences between them are somewhat subtle.
They relate to each other in a simple way, however. If we let 𝑝′(𝜆𝑖) denote the posterior on 𝜆
after seeing data 𝐷 on a new case, then:

𝑝′(𝜆𝑖) = Pr(𝐷|𝜆𝑖)𝑝(𝜆𝑖)
∫ Pr(𝐷|𝜆′

𝑖)𝑝(𝜆′
𝑖)𝑑𝜆′

𝑖
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And then:

̂𝜙(𝑄|𝐷, 𝑝) = ∫ Pr(𝑄&𝐷|𝜆𝑖)𝑝(𝜆𝑖)𝑑𝜆𝑖
∫ Pr(𝐷|𝜆𝑖)𝑝(𝜆𝑖)𝑑𝜆𝑖

(9.1)

= ∫ Pr(𝑄&𝐷|𝜆𝑖)
Pr(𝐷|𝜆𝑖)

Pr(𝐷|𝜆𝑖)𝑝(𝜆𝑖)
∫ Pr(𝐷|𝜆′

𝑖)𝑝(𝜆′
𝑖)𝑑𝜆′

𝑖
𝑑𝜆𝑖 (9.2)

= ∫ Pr(𝑄&𝐷|𝜆𝑖)
Pr(𝐷|𝜆𝑖)

𝑝′(𝜆𝑖)𝑑𝜆𝑖 (9.3)

= ̂𝜋(𝑄|𝐷, 𝑝′) (9.4)

In other words, posing a ̂𝜙 query about a new “informative” case is equivalent to first using
that new case to update 𝜆 and then posing a ̂𝜋 query about the case using the posterior
distribution on 𝜆. The one thing we have to be sure not to do is to first use the new case to
update on 𝜆 and then pose a ̂𝜙 query about the same case—since that would effectively be
updating 𝜆 twice from the same case data.

9.3.2.2 When New Cases Carry New Information

The difference between uninformative- and informative-case queries turns on the nature of
uncertainty over the conditioning information, 𝐷. When undertaking an uninformative-case
query, we have no uncertainty about whether we will observe 𝐷 in the case: The case of
interest has been selected for its display of 𝐷. In an informative-case query, because we don’t
condition selection on 𝐷, we don’t know whether we will observe 𝐷 in the case before we select
it: Thus, observing 𝐷 can potentially tell us something about the world (about 𝜆).

By the same token, if the likelihood of observing 𝐷 in a randomly selected case is the same
under all beliefs we might have about the world, then we will not update those beliefs when
we observe 𝐷. The informative-case query then collapses into an uninformative one. In fact,
comparing expressions ̂𝜋(𝑄|𝐷) and ̂𝜙(𝑄|𝐷) above, we can see that if Pr(𝐷) is constant over
𝜆𝑖, then ̂𝜋(𝑄|𝐷) = ̂𝜙(𝑄|𝐷).
For instance, we will not update on 𝜆 from observing 𝐷 in a randomly selected case if 𝐷’s
distribution in the population is known. Suppose that we are interested in a subgroup effect—
for instance, the conditional average treatment effect of 𝑋 on 𝑌 for democracies and for
non-democracies—and that the relative sizes of these two subgroups are already known. Then,
when we randomly draw a case and observe that it is a democracy, we do not learn anything
about the world: The likelihood of having observed a democracy in a randomly drawn case is
the same under all values of 𝜆𝑖. So ̂𝜋(𝑄|𝐷) and ̂𝜙(𝑄|𝐷) are the same. Thus, if we think there
is a positive effect in 50% of democracies in the population and in 30% of the non-democracies,
then we think that the probability that there is an effect in a new random case is 0.5 if it is a
democracy and 0.3 if it is a non-democracy.
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Table 9.5: Beliefs over two states of the world, where information on a new case leads to
updating about the state of the world

𝜆 𝑝(𝜆) 𝜆𝑌
1 𝜆𝑌

2 𝜆𝐾
0 𝜆𝐾

1

𝜆1 0.01 1 0 0.001 0.999
𝜆2 0.99 0 1 0.999 0.001

While this seems like a straightforward equivalence, it depends crucially on the fact that we
know the share of democracies and non-democracies in the population in advance of drawing
the case. If we didn’t, then observing democracy in the new case could alter our beliefs about
𝜆.

Similarly, ̂𝜋(𝑄|𝐷) and ̂𝜙(𝑄|𝐷) will be the same for any case-level query for which 𝐷 is the
empty set—that is, for which we condition on no observed characteristic. For instance, if our
query is simply the probability that 𝑋 has a positive effect on 𝑌 in a case, then ̂𝜋(𝑄|𝐷) will
simply be the share of cases in the population with a positive effect. For ̂𝜙(𝑄|𝐷), we are not
making use of any information from the newly drawn case and so will not update on 𝜆, we
will just use the very same population share used for ̂𝜋(𝑄|𝐷).
Conversely, if Pr(𝐷) is not constant over 𝜆𝑖 then ̂𝜙(𝑄|𝐷) can differ from ̂𝜋(𝑄|𝐷): That is, our
case-level inference may differ depending on whether we selected the case because it displayed 𝐷
or we discovered 𝐷 after randomly drawing the case. For this reason, it is in principle possible
to arrive at two seemingly contradictory inferences at the same time: We can simultaneously
figure that ̂𝜋(𝑋 causes 𝑌 |𝐾 = 1, 𝑝) is very small and that ̂𝜙(𝑋 causes 𝑌 |𝐾 = 1, 𝑝) is very
large. In other words, you could believe that among units for which (K=1), it is unlikely that
there is an effect of 𝑋 on 𝑌 , while at the same time observing 𝐾 = 1 in a new case could be
enough to convince you that 𝑋 caused 𝑌 for the case.

A quite stark example can illustrate how this can be possible. Imagine that we have a model
in which 𝑌 is a function of both 𝑋 and 𝐾: 𝑋 → 𝑌 ← 𝐾. Suppose, further, we entertained
just two possible nodal types for 𝜃𝑌 :

1. 𝜃𝑌
1 : 𝑌 = 1 if and only if both 𝑋 = 1 and 𝐾 = 1; we let 𝜆𝑌

1 denote the share of cases
with 𝜃𝑌 = 𝜃𝑌

1
2. 𝜃𝑌

2 : 𝑌 = 0 regardless of 𝑋 and 𝐾; we let 𝜆𝑌
2 denote the share of cases with 𝜃𝑌 = 𝜃𝑌

2

We also let 𝜆𝐾
1 denote the share of cases in which 𝐾 = 1.

We then imagine two possible worlds that we might be in, 𝜆1 and 𝜆2, described in Table 9.5.

Note that we start out believing there is a 0.01 probability that we are in 𝜆1 and a 0.99
probability that we are in 𝜆2.

For the query ̂𝜋(𝑋 causes 𝑌 |𝐾 = 1), we ask: What is the probability that 𝑋 causes 𝑌 in a
case with 𝐾 = 1? This is the same as asking for what share of 𝐾 = 1 cases in the population
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𝑋 does cause 𝑌 . The answer is 100% if 𝜆 = 𝜆1 and 0% if 𝜆 = 𝜆2. So, given the probability
our model places on the two worlds, the expected share is 𝑝(𝜆1) = 0.01. Thus, if we were to
present you with a case randomly selected from those with 𝐾 = 1, we would say it is very
unlikely that 𝑋 causes 𝑌 for that case.

For the query ̂𝜙(𝑋 causes 𝑌 |𝐾 = 1), we ask: What is the probability that 𝑋 causes 𝑌 in a
randomly drawn case in which we then observe 𝐾 = 1? The likelihoods of observing 𝐾 = 1
or 𝐾 = 0 for a randomly drawn case, given different beliefs about 𝑋’s effect, are shown in
Table 9.6.

Table 9.6: Case level inference given new case data

𝐾 = 0 𝐾 = 1
𝜆1 (𝑋 causes 𝑌 ) 0 0.01
𝜆2 (𝑋 doesn’t cause 𝑌 ) 0.989 0.001

We can read ̂𝜙(𝑋 causes 𝑌 |𝐾 = 1) off of this table: The probability that 𝑋 causes 𝑌 given
the observation of 𝐾 = 1 is 0.01/(0.01 + 0.001) = 0.91.

So, we think that the typical 𝐾 = 1 case has a very low probability of being one in which 𝑋
causes 𝑌 because our model tells us we’re very likely in a world (that of 𝜆2) in which 𝑋 never
causes 𝑌 . Yet the likely world (where 𝜆2) is also a world in which we should almost never
observe 𝐾 = 1. Thus, finding out that 𝐾 = 1 in a randomly drawn case allows us to update
to a belief that we are more likely in the world of 𝜆1—where 𝑋 indeed causes 𝑌 whenever
𝐾 = 1. In other words, our prior beliefs about the world can be upended by what we see in
new cases, in turn changing how we understand those cases.

9.3.3 Learning without Identification

A third payoff of this approach is that it allows us to engage in inference even when causal
queries are not identified. When a query is identified, each true value for the query is associated
with a unique distribution of data types. Thus, as we gather more and more data, our posterior
on the query should converge on the true value. When a query is not identified, multiple true
values of the query will be associated with the same distribution of data types. With a
non-identified query, our posterior will never converge on a unique value regardless of how
much data we collect since multiple answers will be equally consistent with the data. A key
advantage of a causal model framework, however, is that we can learn about queries that are
not identified but are still “partially identified,” even if we cannot remove all uncertainty over
such queries.

We can illustrate the difference between identified and non-identified causal questions by com-
paring an ATE query to a probability of causation PC query for a simple 𝑋 → 𝑌 model. When
asking about the ATE, we are asking about the average effect of 𝑋 on 𝑌 , or the difference
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between 𝜆𝑌
01 (the share of units with positive effects) and 𝜆𝑌

10 (share with negative effects).
When asking about the PC, we are asking, for a case with given values of 𝑋 and 𝑌 , about
the probability that 𝑋 caused 𝑌 in that case. This PC query is defined by a different set of
parameters. For, say, an 𝑋 = 1, 𝑌 = 1 case and a 𝑋 → 𝑌 model, the probability of causation
is given by just 𝜆𝑌

01/(𝜆𝑌
01 + 𝜆𝑌

11).
Let us assume a “true” set of parameters, unknown to the researcher, such that 𝜆𝑌

01 = 0.6, and
𝜆𝑌

10 = 0.1 while we set 𝜆𝑌
00 = 0.2 and 𝜆𝑌

11 = 0.1. Thus, the true average causal effect is 0.5.
We now use these parameters and the model to simulate a large amount of data (𝑁 = 10,000).
We then return to the model, set flat priors over nodal types, and update the model using the
simulated data. We graph the posterior on our two queries, the ATE and the probability of
positive causation in an 𝑋 = 1, 𝑌 = 1 case, in Figure 9.6.
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Figure 9.6: Posterior distributions. ATE is identified PC is not identified but has informative
bounds

The figure nicely illustrates the difference between an identified and non-identified query. While
the ATE converges on the right answer, the probability of causation fails to converge even with
a massive amount of data. We see instead a range of values for this query on which our updated
model places roughly equal posterior probability.

Importantly, however, we see that we do learn about the probability of causation. Despite the
lack of convergence, our posterior rules out a wide range of values. While our prior on the
query was 0.5, we have correctly updated toward a range of values that includes (and happens
to be fairly well centered over) the true value (≈ 0.86).

A distinctive feature of updating a causal model is that it lets us learn about non-identified
quantities in this manner. We might end up with “ridges” in our posterior distributions: ranges
or combinations of parameter values that are equally likely given the data. But our posterior
weight can nonetheless shift toward the right answer.
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At the same time, for non-identified queries, we have to be cautious about the impact of our
priors. As 𝑁 becomes large, the remaining curvature we see in our posteriors may simply be
a function of those priors. One way to inspect for this is to simulate a very large dataset and
see whether variance shrinks. A second approach is to do sensitivity analyses by updating the
model on the same data with different sets of priors to see how this affects the shape of the
posterior.

Finally, we note a nontrivial practical payoff. Whether quantities are identified or not, we
calculate answers to queries in the same way: by defining a model, then updating it and
querying it. We do not have to figure out the particular estimating equation that works to
return a good estimate of an estimand. To illustrate the point, in a beautiful contribution,
Angrist and Imbens (1995) show that, under a small set of conditions, average treatment
effects for compliers (or “CACE” for “complier average causal effects”) are identifiable, and
then figure out what procedure one can use for estimating them (instrumental variables). Yet
a researcher who believed that the conditions Angrist and Imbens stipulate held in their causal
model, updated their model with a large amount of data, and queried for the complier average
effect would get to the right answer with a low posterior variance. And they would get there
even if they had never read Angrist and Imbens (1995), did not know beforehand that their
quantity of interest was identified, and did not know what estimating equation they would
need to estimate it consistently.

9.4 Extensions

In our presentation of the baseline approach so far, we have assumed that we are analyzing
binary data on a set of cases with independent (potential) outcomes for the central purpose
of estimating causal relationships. In this last section, we consider four extensions of this
basic approach: a procedure for handling nonbinary data and applications of the framework
to modeling and learning about measurement error and spillovers between units.

9.4.1 Beyond Binary Data

The approach we have described readily generalizes to nonbinary data. Moving beyond binary
nodes allows for considerably greater flexibility in response functions. For instance, moving
from binary to merely three-level ordinal 𝑋 and 𝑌 variables allows us to represent nonlinear
and even non-monotonic relationships. It also allows us to pose more complex queries, such as,
“What is the probability that 𝑌 is linear in 𝑋?,” “What is the probability that 𝑌 is concave
in 𝑋?” or “What is the probability that 𝑌 is monotonic in 𝑋?”

To move to nonbinary nodes, we need to be able to expand the nodal-type space to accom-
modate the richer range of possible relations between nodes that can take on more than two
possible values. Suppose, for instance, that we want to operate with variables with four ordinal
categories. In an 𝑋 → 𝑌 model, 𝑌 ’s nodal types have to accommodate four possible values
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Table 9.7: Posteriors on potential outcomes for non binary model

Q using True value mean sd
Y(0) posteriors 0 0.39 0.09
Y(1) posteriors 1 0.98 0.07
Y(2) posteriors 3 2.61 0.09
Y(3) posteriors 2 2.02 0.07

that 𝑋 can take on, and four possible values that 𝑌 can take on for any value of 𝑋. This
yields 44 = 256 nodal types for 𝑌 and 1024 causal types (compared to just eight in a binary
setup).

The CausalQueries package, set up to work most naturally with binary nodes, can in principle,
be used to represent nonbinary data as well.8

In the illustration below with two four-level variables, we generate data (𝑁 = 100) from a
non-monotonic process with the following potential outcomes: 𝑌 (0) = 0, 𝑌 (1) = 1, 𝑌 (2) = 3,
and 𝑌 (3) = 2. We then update and report on posteriors on potential outcomes.

Updating and querying are done in the usual way. In Table 9.7, we show results for a simple
set of queries in which we ask what 𝑌 ’s expected outcome is for each value of 𝑋. We report
the mean and standard deviation for the posterior on each query and as a benchmark, also
show the “true” parameter value that we used to generate the data.

We see that the model performs well. As in the binary setup, the posterior reflects both the
data and the priors. And, as usual, we have access to a full posterior distribution over all
nodal types and can thus ask arbitrary queries of the updated model.

The greatest challenge posed by the move to nonbinary data is computational. If 𝑌 takes on 𝑚
possible values and has 𝑘 parents, each taking on 𝑟 possible values, we then have 𝑚(𝑟𝑘) nodal
types for 𝑌 . Thus, the cost of more granular measurement is complexity—an explosion of the
parameter space—as the nodal type space expands rapidly with the granularity of measurement
and the number of explanatory variables. With three-level ordinal variables pointing into the
same outcome, for instance, we have 327 = 7.6 trillion nodal types.

We expect that, as measurement becomes more granular, researchers will want to manage the
complexity by placing structure onto the possible patterns of causal effects. Structure, imposed

8The trick, as it were, is to express integers in base-2 and then represent the integer as a series of 0’s and
1’s on multiple nodes. In base-2 counting we would represent four integer values for 𝑋 (say, 0, 1, 2,3)
using 00, 01, 10, 11. If we use one binary node, 𝑋1 to represent the first digit, and a second node 𝑋2 to
represent the second, we have enough information to capture the four values of 𝑋. The mapping then is:
𝑋1 = 0, 𝑋2 = 0 represents 𝑋 = 0; 𝑋1 = 0, 𝑋2 = 1 represents 𝑋 = 1; 𝑋1 = 1, 𝑋2 = 0 represents 𝑋 = 2;
and 𝑋1 = 1, 𝑋2 = 1 represents 𝑋 = 3. We construct 𝑌 in the same way. We can then represent a simple
𝑋 → 𝑌 relation as a model with two 𝑋 nodes each pointing into two 𝑌 nodes: 𝑌1 ← 𝑋1 → 𝑌2, 𝑌1 ←
𝑋2 → 𝑌2. To allow for the full range of nodal types we need to allow a joint distribution over 𝜃𝑋1 and 𝜃𝑋2

and over 𝜃𝑌1 and 𝜃𝑌2 , which results in three degrees of freedom for 𝑋 and 255 for 𝑌 , as required.
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through model restrictions, can quite rapidly tame the complexity. For some substantive
problems, one form of structure we might be willing to impose is monotonicity. In a 𝑋 → 𝑌
model with three-level variables, excluding non-monotonic effects brings down the number of
nodal types from 27 to 17. Alternatively, we may have a strong reason to rule out effects in
one direction: Disallowing negative effects, for instance, brings us down to 10 nodal types. If
we are willing to assume linearity, the number of nodal types falls further to 5.

9.4.2 Measurement Error

One potential application of the approach we have described in this chapter to integrating
differing forms of data is to address the problem of measurement error. The conceptual move
to address measurement error in a causal model setup is quite simple: We incorporate the
error-generating process into our model.

Consider, for instance, a model in which we build in a process generating measurement error
on the dependent variable.

𝑋 → 𝑌 → 𝑌measured ← source of measurement error

Here, 𝑋 has an effect on the true value of our outcome of interest, 𝑌 . The true value of 𝑌 ,
in turn, has an effect on the value of 𝑌 that we measure, but so too does a potential problem
with our coding process. Thus, the measured value of 𝑌 is a function of both the true value
and error.

To motivate the setup, imagine that we are interested in the effect of a rule restricting long-term
care staff to working at a single site (𝑋) on outbreaks of the novel coronavirus in long-term care
facilities (𝑌 ), defined as infections among two or more staff or residents. We do not directly
observe infections, however; rather, we observe positive results of PCR tests. We also know
that testing is neither comprehensive nor uniform. For some units, regular random testing is
carried out on staff and residents, while in others, only symptomatic individuals are tested. It
is the latter arrangement that potentially introduces measurement error.

If we approach the problem naively, ignoring measurement error and treating 𝑌measured as
though it were identical to 𝑌 , a differences-in-means approach might produce attenuation
bias—insofar as we are averaging between the true relationship and 0.

We can do better with a causal model, however. Without any additional data, we can update on
both 𝜆𝑌 and 𝜆𝑌measured , and our posterior uncertainty would reflect uncertainty in measurement.
We could go further if, for instance, we could reasonably exclude negative effects of 𝑌 on
𝑌measured. Then, if we observe (say) a negative correlation between 𝑋 and 𝑌measured, we can
update on the substantive effect of interest—𝜆𝑌 —in the direction of a larger share of negative
effects: It is only via negative effects of 𝑋 on 𝑌 that a negative correlation between 𝑋 and
𝑌measured could emerge. At the same time, we learn about the measure itself as we update on
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Table 9.8: Inferences on effects on true Y given measurement error (true ATE = .6)

Data using mean sd
Data on Y measured only posteriors 0.64 0.09
Data on true Y for 20% of units posteriors 0.63 0.03
Data on true Y posteriors 0.61 0.02

𝜆𝑌measured : The negative observed correlation between 𝑋 and 𝑌measured is an indicator of the
degree to which 𝑌measured is picking up true 𝑌 .

We can do better still if we can collect more detailed information on at least some units. One
data strategy would be to invest in observing 𝑌 , the true outbreak status of each unit, for a
subset of units for which we already have data on 𝑋 and 𝑌measured — perhaps by implementing
a random-testing protocol at a subset of facilities. Getting better measures of 𝑌 for some cases
will allow us to update more directly on 𝜆𝑌 , and so the true effect of 𝑋 on 𝑌 , for those cases.
But just as importantly, observing true 𝑌 will allow us to update on measurement quality,
𝜆𝑌measured , and thus help us make better use of the data we have for those cases where we
only observe 𝑌measured. This strategy, of course, parallels a commonly prescribed use of mixed
methods, in which qualitative research takes place in a small set of units to generate more
credible measures for large-𝑛 analysis (see, e.g., Seawright (2016)).

To illustrate, we posit a true average effect of 𝑋 on 𝑌 of 0.6. We also posit an average “effect”
of 𝑌 on measured 𝑌 of just 0.7, allowing for measurement error.

In this setup, with a large amount of data, we would arrive at a differences-in-means estimate
of the effect of 𝑋 on measured 𝑌 of about 0.42. Importantly, this would be the effect of 𝑋
on 𝑌measured — not the effect of 𝑋 on 𝑌 — but if we were not thinking about the possibility
of measurement error, we might conflate the two, arriving at an estimate far from the true
value.

We can improve on this “naive” estimate in a number of ways using a causal model, as shown
in Table 9.8. First, we can do much better simply by undertaking the estimation within a
causal model framework, even if we simply make use of the exact same data. We write down
the following simple model 𝑋 → 𝑌 → 𝑌measured, and we build in a monotonicity restriction
that disallows negative effects of 𝑌 on 𝑌measured. As we can see from the first row in Table 9.8,
our mean estimate of the 𝐴𝑇 𝐸 moves much closer to the true value of 0.6, and it has an
appropriately larger posterior standard deviation.

Second, we can add data by gathering measures of “true” 𝑌 for 20% of our sample. As we
can see from the second row in the table, this investment in additional data does not change
our posterior mean much but yields a dramatic increase in precision. In fact, as we can see
by comparison to the third row, partial data on “true” 𝑌 yields an estimate that is almost
the same and almost as precise as the one we would arrive at with data on “true” 𝑌 for all
cases.
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Table 9.9: Inferences on effects on true Y given two noisy measures (true ATE = .6)

Data using mean sd
Two noisy measures posteriors 0.61 0.02

An alternative strategy might involve gathering multiple measures of 𝑌 , each with its own
independent source of error. Consider the model, 𝑋 → 𝑌 → 𝑌measured[1]; 𝑌 → 𝑌measured[2].
Assume again a true 𝐴𝑇 𝐸 of 𝑋 on 𝑌 of 0.6, that 𝑌 has an average effect of 0.7 on both
𝑌measured[1] and 𝑌measured[2], and no negative effects of true 𝑌 on the measures.9 In this setup,
updating the true 𝑌 can be thought of as a Bayesian version of “triangulation,” or factor
analysis. The results in Table 9.9 are based on the same data as in the previous example but
are now augmented with the second noisy measure for 𝑌 .

As we can see, two noisy measures perform in this example about as well as access to full data
on the true 𝑌 (as in Table 9.8).

The main point here is that measurement error matters for inference and can be taken directly
into account within a causal model framework. Confusing measured variables for variables of
interest will obviously lead to false conclusions. But if measurement concerns loom large, we
can respond by making them part of our model and learning about them. We have illustrated
this point for simple setups, but more complex structures could be just as well envisioned, such
as those where the error is related to 𝑋 or, more perniciously, to the effects of 𝑋 on 𝑌 .

9.4.3 Spillovers

A common threat to causal inference is the possibility of spillovers: a given unit’s outcome
being affected by the treatment status of another (e.g., possibly neighboring) unit. We can
readily set up a causal model to allow for the estimation of various quantities related to
spillovers.

Consider, for instance, the causal model represented in Figure 9.7. We consider here groupings
of pairs of units across which spillovers might occur. We might imagine, for instance, geograph-
ically proximate villages separated from other groups such that spillovers might occur between
neighboring villages but can be ruled out across more distal villages. Here, 𝑋𝑖 and 𝑌𝑖 represent
village 𝑖’s treatment status and outcome, respectively. The pattern of directed edges indicates
that each village’s outcome might be affected both by its own and by its neighbors’ treatment
status.

We now simulate data that allow for spillovers. Specifically, while independently assigning
𝑋1 and 𝑋2 to treatment 50% of the time, we (a) set 𝑌1 equal to 𝑋1, meaning that Unit 1 is

9Importantly, this model assumes nodal types for 𝑌measured[1] and 𝑌measured[2] are independent of one another
(no unobserved confounding), implying independent sources of measurement error in this setup.
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affected only by its own treatment status and (b) set 𝑌2 equal to 𝑋1 × 𝑋2, meaning that Unit
2 is equally affected by its own treatment status and that of its neighbor, such that 𝑌2 = 1
only if both Unit 2 and its neighbor are assigned to treatment.

We simulate 100 observations from this data-generating process and then update a model (with
flat priors over all nodal types). Results are presented in Table 9.10

X1

X2
Y1

Y2

Figure 9.7: Model with spillovers: the treatment status of two units each affect the outcomes
for both.

Now we can extract a number of spillover-relevant causal quantities from the updated
model. First, we ask: What is the average effect of exposing a unit directly to treatment
(“only_self_treated”) when the neighboring unit is untreated? Under the data-generating
process that we have posited, we know that this effect will be 1 for Unit 1 (which always has
a positive treatment effect) and 0 for Unit 2 (which sees a positive effect of 𝑋2 only when
𝑋1 = 1), yielding an average across the two units of 0.5. In Table 9.10, see that we update,
given our 100 observations, from a prior of 0 to a posterior mean of 0.371, approaching the
right answer.

A second question we can ask is about the spillover itself: What is the average treatment
effect for a unit of its neighbor being assigned to treatment when the unit itself is not assigned
to treatment (“only_other_treated”)? We know that the correct answer is 0 since Unit 1
responds only to its own treatment status, and Unit 2 requires that both units be assigned to
treatment to see an effect. Our posterior estimate of this effect is right on target, at 0.

We can then ask about the average effect of any one unit being treated, as compared to no
units being treated (“one_treated”). This is a more complex quantity. To estimate it, we
have to consider what happens to the outcome in Unit 1 when only 𝑋1 shifts from control
to treatment, with 𝑋2 at control (the true effect is 1); what happens to Unit 1 when only
𝑋2 shifts from control to treatment, with 𝑋1 at control (the true effect is 0); and the same
two effects for Unit 2 (both true effects are 0). We then average across both the treatment
conditions and units. We arrive at a posterior mean of 0.186, not far from the true value of
0.25.
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Table 9.10: Spillover queries

label using mean sd cred.low cred.high
only_self_treated posteriors 0.38 0.05 0.28 0.47
only_other_treated posteriors 0.02 0.04 -0.06 0.11
one_treated posteriors 0.20 0.04 0.13 0.27
both_treated posteriors 0.76 0.05 0.65 0.84

Finally, we can ask about the average effect of both treatments going from control to treatment
(“both_treated”). The true value of this effect is 1 for both units, and the posterior has shifted
quite far in the direction of this value.

Obviously, more complex setups are possible. The main idea however is that spillovers, often
seen as a threat to inference, can just as well been seen as an opportunity to learn about an
array of causal processes.

9.5 Chapter Appendix: Mixing Methods with CausalQueries

9.5.1 An Illustration in Code

We now demonstrate how to do model updating in CausalQueries when you have 𝑋 and 𝑌
data for many cases but “causal process observations” for only a smaller number of cases.

Imagine a simple model in which 𝑋 has a possible direct or indirect effect via 𝑀 . We can
define the model thus:

model <- make_model("X -> M -> Y <- X")

We do not provide any structure to priors or impose any monotonicity constraints. But we do
imagine that we can access some data and update using these data. For this illustration, the
data are consistent with effects running through 𝑀 ; moreover, 𝑋, 𝑌 data are available for all
units, but 𝑀 is available for some units only. We now input data and update the model.

data <- data.frame(
X = c(0,0,0,0,1,1,1,1),
M = c(NA,0,0,1,0,1,1,NA),
Y = c(0,0,0,1,0,1,1,1)) %>%
uncount(10)

model <- update_model(model, data)
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Table 9.11: Querying an updated model

given estimate
X==1 & Y==1 0.765
X==1 & Y==1 & M==0 0.581
X==1 & Y==1 & M==1 0.775

We can now query the updated model to figure out how our inferences for a case depend on
𝑀 :

query_model(model,
query = "Y[X=1]> Y[X=0]",
given = c("X==1 & Y==1",

"X==1 & Y==1 & M==1",
"X==1 & Y==1 & M==0"),

using = "posteriors",
case_level = TRUE)

Results are shown in Table 9.11. We see that 𝑀 is informative (particularly when 𝑀 = 0)
about causal effects in a new case, given our observation of processes in previous cases. The
key thing here is that the informativeness of 𝑀 for the new case is justified by the updating of
the original model–a model that itself contained no assumptions about whether or how effects
passed through 𝑀 .

9.5.2 Replication of Chickering and Pearl (1996) Lipid Analysis.

Chickering and Pearl (1996) assess the problem of drawing inferences in the presence of imper-
fect compliance. They use data that look like those in Table 9.12.

Chickering and Pearl (1996) use a Gibbs sampler to update over 16 response types (and so
15 degrees of freedom). The parameterization in CausalQueries has four nodal types for 𝑋
and four parameters capturing the conditional distribution of the four nodal types for 𝑌 given
each nodal type for 𝑋, giving 3 + 4 × 3 = 15 degrees of freedom.

In CausalQueries the complete code for model specification, updating, and querying is quite
compact:

results <-

make_model("Z -> X -> Y; X <-> Y") |>
update_model(data, data_type = "compact") |>
query_model(query = "Y[X=1] - Y[X=0]", using = "posteriors")
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Table 9.12: Lipid study data from Chickering and Pearl (1996). Note data are reported in
compact form with counts of events, assuming a data strategy in which data are
sought on all nodes (ZXY)

event strategy count
Z0X0Y0 ZXY 158
Z1X0Y0 ZXY 52
Z0X1Y0 ZXY 0
Z1X1Y0 ZXY 23
Z0X0Y1 ZXY 14
Z1X0Y1 ZXY 12
Z0X1Y1 ZXY 0
Z1X1Y1 ZXY 78

Table 9.13: Replication of Chickering and Pearl (2007).

label query given using mean sd cred.low cred.high
Y[X=1] - Y[X=0] Y[X=1] - Y[X=0] - posteriors 0.552 0.1 0.373 0.731

Table 9.13 reports the results while Figure 9.8 shows the full posterior distribution for this
query.

The results agree with the findings in Chickering and Pearl (1996). We also show the posterior
distribution for the average effects among the compliers—those for whom 𝑍 has a positive
effect on 𝑋—which is tighter thanks to identification for this query.

Chickering and Pearl (1996) also assess probabilities of counterfactual events for single cases.
For instance, would there be a positive effect for someone with 𝑋 = 0, 𝑌 = 0. Our answers to
this query, shown in Table 9.14, also agree with Chickering and Pearl (1996), see Table 9.14.
Note that when we calculate inferences for a single “new” case (“Case level”) our conclusion
is a single number, a probability, and it does not have a confidence interval around it.

make_model("Z -> X -> Y; X <-> Y") |>
update_model(data, data_type = "compact") |>
query_model(

query = "Y[X=1] - Y[X=0]",
given = "X==0 & Y==0",
case_level = c(FALSE, TRUE),
using = "posteriors")
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Figure 9.8: Posterior distributions on average treatment effects and treatment effects for com-
pliers. Left panel replicates Chickering and Pearl (1997).

Table 9.14: Case level counterfactual inference following model updating (replication of Chick-
ering and Pearl 1997).

Case level mean sd cred.low cred.high
FALSE 0.634 0.151 0.371 0.894
TRUE 0.634 0.634 0.634
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Table 9.15: Probability distribution over two parameter vectors

𝜆 𝑝(𝜆) 𝜆𝑋
0 𝜆𝑋

1 𝜆𝑀
01 𝜆𝑀

10 𝜆𝑌
01 𝜆𝑌

10

𝜆1 0.5 0.5 0.5 0.01 0.99 0.01 0.99
𝜆2 0.5 0.5 0.5 0.99 0.01 0.99 0.01

9.5.3 Probative value arising from correlations in the posterior distribution over
parameters

In Chapter 7, we showed how you can use rules of 𝑑-separation to assess whether data on a
node has probative value for a query given a case-level DAG.. In that discussion, we were
conditioning on 𝜆 (or assuming that nonindependencies arising from the joint distribution
of 𝜆 were already captured by the DAG). How do things change when we update over the
distribution of 𝜆?

In that case, it is possible that when we update over 𝜆 we have dependencies in our beliefs
that call for a reassessment of the case-level DAG and so a reassessment of when case-level
data have probative value for a query.

Thus, we may have a case-level DAG where two nodes, 𝐴 and 𝐵 are 𝑑-separated given 𝐶
conditional on 𝜆. In other words, we are convinced that in the data generating process,
whatever it is, 𝐴 and 𝐵 are 𝑑-separated given 𝐶 and so 𝐴 has no probative value for learning
about 𝐵 given 𝐶. We might even specify prior beliefs over 𝜆 such that beliefs over 𝜆𝐴 and
𝜆𝐵 are independent and so 𝐴 and 𝐵 are also 𝑑-separated for each case in the population DAG
(Figure 9.2. However, after updating, beliefs over 𝜆𝐴 and 𝜆𝐵 may no longer be independent
and, in consequence, 𝐴 and 𝐵 may no longer be 𝑑-separated given 𝐶.

We illustrate by imagining a chain model of the form 𝑋 → 𝑀 → 𝑌 . Note that as written
𝑋 is 𝑑-separated from 𝑌 given 𝑀 . Say, however, that we have the following (Table 9.15)
joint distribution of beliefs over model parameters (where, as before, subscript 01 indicates a
positive effect and 10 a negative effect):

Beliefs like this might arise if you observe a lot of strongly correlated data on 𝑋 and 𝑌 but
never get to observe 𝑀 .

Say we now ask about ̂𝜋(𝑋 = 0|𝑀 = 1, 𝑌 = 1). This is given by 𝜆𝑋
0 𝜆𝑀

10𝜆𝑌
01

𝜆𝑋
0 𝜆𝑀

10𝜆𝑌
01+𝜆𝑋

1 𝜆𝑀
01𝜆𝑌

01
= 𝜆𝑀

01
which has expected value 0.5×0.01+0.5×0.99 = 0.5. Similarly ̂𝜋(𝑋 = 1|𝑀 = 1, 𝑌 = 0) = 0.5.
The reason is that in the model, conditional on 𝜆, 𝑌 is 𝑑-separated from 𝑋 by 𝑀 .

However, when we now ask about ̂𝜙(𝑋 = 0|𝑀 = 1, 𝑌 = 1) we are not conditioning on 𝜆. We
have

̂𝜙(𝑋 = 1|𝑀 = 1, 𝑌 = 0) = 0.02 and ̂𝜙(𝑋 = 1|𝑀 = 1, 𝑌 = 1) = 0.98. Thus, we do not have
conditional independence. Referring back to Figure 9.2, if we were to include double-headed
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arrows between the 𝜆𝑀 and 𝜆𝑌 terms and then focus on the DAG for unit 1, we would then
have to include double-headed arrows between 𝑀 and 𝑌 .

For this reason, when drawing DAGs we need to be careful to specify either that the DAG
represents the independence of 𝜃 terms given 𝜆 or make sure that the DAG is faithful to
violations of independence that arise from correlated beliefs over 𝜆. Figure 9.9 illustrates. If
we mean only the former, then we cannot use the rules of 𝑑-separation to determine whether
a clue has probative value for our beliefs on causal quantities.

λM

λY

θM

θY Y

M

X

(1) The population DAG

Y

M

X

(2) The case DAG conditioning on .

Y

M

X

(3) ...incorporating correlated beliefs over .

Figure 9.9: 𝑑-connectedness via correlations in beliefs over 𝜆
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10 Integrated Inferences Applications

Chapter summary

Parallel to the single-case process-tracing analyses in Chapter 8, we show how we can use
data from multiple cases to update our models of inequality and democratization and of
institutions and growth. We then use the updated models to draw both population-level
and case-level inferences. These applications illustrate situations in which learning is
minimal and in which it is more substantial, and demonstrate how the probative value
of process-tracing clues can be empirically established through model-updating.

In Chapter 8, we undertook single-case process-tracing from causal models about inequality
and democratization and about institutions and growth. In that chapter, we took the model as
given and sought to draw inferences about individual cases given data on those cases. In this
chapter, which applies the multi-case setup in Chapter 9 to the same two substantive problems,
the models become objects that we both learn from and learn about. We use data on a large
set of cases to update our beliefs about the general model and then use this “trained” model
to make inferences about causal questions posed at both the population and the case level.

In the process-tracing applications, we had to posit beliefs about the distribution of (or
population-level share) of nodal types for each node in the model. For multi-case process
tracing, in contrast, we posit a prior distribution over the distribution of nodal types—that
is, a distribution over 𝜆. Because we set a prior distribution over nodal types (rather than
fixing proportions), we can now update on these population-level distributions as the model
confronts data.

The same applies to beliefs about confounding. Recall that we allow for unobserved confound-
ing by allowing 𝜆 to include beliefs about the joint distributions of nodal types; we set priors on
these joint distributions as well. In the inequality and democratization application, we allow
for unobserved confounding between inequality and mobilization: The possibility that inequal-
ity may be more or less likely in places where inequality would induce mobilization. In the
institutions and growth application, we allow for unobserved confounding between institutions
and growth. In both examples, we refrain from expressing informed prior beliefs about the
direction or magnitude of the confounding; we merely allow for the possibility of confounding
and set a flat prior over its direction and magnitude. Furthermore, in the institutions and
growth example, we show how we can usefully learn about the confounding directly from the
data.
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10.1 Inequality and Democratization

We begin with the same basic model that we used in Chapter 8, with inequality (𝐼) potentially
affecting democratization (𝐷) both through a direct pathway and through an indirect pathway
mediated by mobilization (𝑀). International pressure (𝑃 ) is also a “parent” of democratiza-
tion.

Further, we impose the same set of monotonicity restrictions, ruling out a negative effect of
inequality on mobilization, a direct positive effect of inequality on democratization, a negative
effect of mobilization on democracy, and a negative effect of pressure on democratization.
Note that this setup allows for inequality to have a positive (through mobilization) effect on
democratization, a negative (direct) effect on democratization, or no effect at all.

Finally, we allow for confounding. The theoretical intuition we want to capture in the model
is that the level of inequality could be endogenous to inequality’s effect on mobilization. In
particular, in places where inequality would pose a mobilizational threat, governments may
work harder to reduce inequality. To allow for this possibility, we need to create distinct
elements of 𝜆 representing the conditional distribution of 𝐼 ’s nodal types given 𝑀 ’s: One
parameter for 𝜃𝐼 ’s distribution when 𝑀 ’s nodal type is 𝜃𝑀

01, and another parameter for 𝜃𝐼 ’s
distribution when 𝑀 ’s nodal type is something else.

This model, with confounding, is represented graphically as in Figure 10.1. The possibility of
confounding is represented with the bidirected edge, connecting 𝐼 and 𝑀 .

D

I
M

P

Figure 10.1: Democracy and Inequality Model
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Table 10.1: Data (snippet) derived from Haggard and Kaufman (2012)

Case P I M D
Afghanistan 1 0
Albania 0 0 1 1
Algeria 0 0
Angola 1 0
Argentina 0 0 1 1
Bangladesh 0 0 0 1

10.1.1 Data

To train the model, we add data.

As in Chapter 8, we will confront the model with data drawn from our coding of the case
narratives in the Supplementary Material for Haggard and Kaufman (2012). However, rather
than implementing the analysis case-by-case, we now derive leverage from the joint distribution
of the data available across all cases.

Table 10.1 gives a snippet of the data.

Note that this dataset takes a non-rectangular form common to much multi-method research.
While we have data on the main causal variable of interest (𝐼) and the outcome (𝐷) for all
cases, Haggard and Kaufman’s collection of more detailed case evidence was conditional on
a case’s outcome, 𝐷 = 1: They gathered qualitative data on the presence of international
pressure and the presence of mass-mobilization only for those cases that democratized. This is
not uncommon when selecting cases for process-tracing from a larger population. The analyst
often reasons that more can be learned about how an outcome arises by focusing on cases
where the outcome of interest has in fact occurred. (We assess this case-selection intuition, in
the context of model-based inferences, in Chapter 13.) The result is a nested mixed design in
which we have “thin” (𝐼 and 𝐷) data on a large set of cases and “thicker” data on a subset of
those cases.

The raw correlations between variables are shown in Table 10.2. Some correlations are missing
because, as just noted, data on some variables were only gathered conditional on the values
of others. The correlations we do see are not very strong. There is, in particular, a weak
overall relationship between inequality and democratization—though this is consistent with
inequality having heterogeneous effects across the sample. The strongest correlation in the
data is between 𝑃 and 𝑀 , which are assumed to be uncorrelated in the model, though this
correlation is also quite weak.

246



Table 10.2: Pairwise correlations in the democracy-inequality (PIMD) data. P = Pressure, I
= Inequality, M = Mobilization, D = Democratization

P I M D
P 1.000 0.157 -0.177
I 0.157 1.000 0.114 -0.154
M -0.177 0.114 1.000
D -0.154 1.000

10.1.2 Case-level queries

With data and model in hand, we can now update our model using the procedure described
in Chapter 9 to get a posterior distribution over 𝜆. From this posterior over 𝜆, we can then
generate posterior beliefs over all causal relations in the model.

We then use our posterior over 𝜆 to make claims about the probability that inequality mattered
for democratization in cases with different 𝐼 , 𝐷, and potentially 𝑀 and/or 𝐷 values. This is
similar to the question we posed when we undertook process-tracing in Chapter 8, but we are
now using a model that has been trained on data. In other words, we are using knowledge
of observed relationships across a large number of cases to inform our beliefs about what we
should conclude when we observe particular evidentiary patterns in a specific case.

Our results are graphed in Figure 10.2. In the first two columns of the figure, we consider
what we would conclude in a case that democratized. In the first column, we ask about
the probability that low inequality caused democratization in an 𝐼 = 0, 𝐷 = 1 case. In the
second column, we ask about the probability that high inequality caused democratization in an
(𝐼 = 1, 𝐷 = 1) case. In each column, we assess how our answers would differ based on potential
observations of mobilization and international pressure in the case at hand. We note that, for
all results here, we are calculating ̂𝜋(𝑄|𝐷) as defined in Chapter 9: That is, we are drawing
inferences about case-level probabilities from population shares, treating the case about which
we want to draw an inference as “uninformative” about those population shares.

Overall, we find that the results are remarkably similar to those derived from the untrained
model in Chapter 8: This is clear from a comparison of the patterns in Figure 10.2 here to
those in Figure 8.3. There are some cases, especially in the 𝐼 = 0, 𝐷 = 1 column, for which
𝑀 appears to be slightly less informative under the trained model than under the untrained
model. But the main takeaway is that the observed data here do not seem to substantially
shift our beliefs from those implied by the theoretical assumptions that we originally built into
the model.

This comparison does not tell us definitively how much we have learned from the data. It
is possible, for instance, that while our beliefs about these queries shift little, there could
be (possibly countervailing) shifts in the underlying beliefs about type shares out of which
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the queries are composed. We examine in more detail in Section 10.1.4 below whether the
multi-case data in this application yield updating about underlying type shares.
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Figure 10.2: Case-level inferences given inequality and democratization values and possible
observations of mobilization and pressure.

10.1.3 Population-Level Queries

We can also pose questions to the model at the population level. One set of questions we can
ask of the updated model is about the share of cases for which inequality has a positive effect
or has a negative effect on democratization. We can pose this question at different levels of
conditioning. For instance, we can ask:

1. For all cases. For what proportion of cases in the population does inequality have a
positive effect on democratization? For what proportion a negative effect?

2. For all cases with a given causal state and outcome. Among those cases that in
fact had high inequality and democratized, for what proportion was the high inequality
a cause of democratization? Among those cases that in fact had high inequality and did
not democratize, for what proportion did the high inequality prevent democratization?

3. For cases with a given causal state and outcome, and with or without mo-
bilization and pressure. We can also drill down to make inferences about smaller
subgroups of the population. For what share of high-inequality, democratizing cases
with mobilization did inequality cause the outcome? For what proportion without mo-
bilization? Likewise, for the presence or absence of international pressure? We can, of
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course, ask parallel questions about subgroups with high inequality and no democratiza-
tion.

For each of these population-level questions, we can generate a posterior distribution that
describes our beliefs, by building from our posterior over 𝜆. We can define each query quite
simply in terms of the causal types that correspond to the effect of interest and then calculate
the share of the subgroup in question that has a causal type that satisfies the query. For
instance, for query 2 above as applied to the 𝐼 = 1, 𝐷 = 1 subgroup: for each 𝜆𝑖, we add
up the population share of those causal types that give us both 𝐼 = 1, 𝐷 = 1 and a positive
effect of 𝐼 on 𝐷, and divide that by the sum of the shares of all causal types that give us
𝐼 = 1, 𝐷 = 1.

In Figure 10.3, we graph posterior distributions for the full set of queries. In the first column,
we are concerned with positive effects of 𝐼 on 𝐷, and in the second column with negative
effects.

Starting with the first column, in the first row we are simply asking for what proportion of
cases in the population does 𝐼 have a positive effect. We can see that the share of cases
with positive effects is estimated to be very low, with a good deal of confidence. In the next
row—where the attribution question presupposes we know the values of 𝐼 and 𝐷—we see that
the expected share of positive effects is considerably higher for the subgroup of the population
that in fact experienced high inequality and democratization, though uncertainty about this
share is relatively high. The expected proportion of positive causal effects is believed to be
even higher among those 𝐼 = 1, 𝐷 = 1 cases in which mobilization occurred—and higher
again when an alternative cause (international pressure) is absent. Again, however, though
our uncertainty about these shares is also great.

We also see that we believe that democratization is not caused by inequality in those 𝐼 =
1, 𝐷 = 1 cases in which mobilization is absent. Interestingly, however, this result derives
purely from the model restrictions, rather than from the data: Under the restrictions we
imposed, a positive effect of inequality can operate only through mobilization.

Turning now to the cases in which democratization did not occur, the second column of
Figure 10.3 asks for what proportion of cases overall inequality has a negative effect on democ-
ratization; for what proportion of 𝐼 = 1, 𝐷 = 0 cases inequality prevented democratization;
and this latter query conditional on different clue realizations. We see that inequality appears,
overall, more commonly to prevent democratization than to cause it. We are, moreover, most
confident that inequality played a preventive role in that subgroup in which there was both mo-
bilization and international pressure—both of which could have generated democratization—
but still no democratization occurred (second-to-last plot in the second column).
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Figure 10.3: Posteriors on causes of democratization
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10.1.4 Explorations: How Much Do We Get from the Model versus the Data?

The lack of movement in our case-level queries, in Section 10.1.2, raises the question of whether
or how much we are learning from the data in this analysis, as compared to the beliefs that
we built into the model at the outset, including through the monotonicity restrictions that we
imposed. To examine this in greater detail, in Figure 10.4 we plot posteriors on parameter
values within each family of parameters. The families correspond to nodal types for each node
except 𝑀 . For 𝑀 , to reflect the confounding that we have allowed for between 𝐼 and 𝑀 , we
have one family for nodal types for 𝑀 conditional on 𝐼 = 0 and another for nodal types for
𝑀 conditional on 𝐼 = 1.

Recall that we had eliminated nodal types that violated monotonicity (e.g., those representing
negative effects of 𝐼 on 𝑀 or of 𝑀 or 𝑃 on 𝐷) and then placed flat priors on the remaining
nodal types within each family. In other words, in our priors the plotted points in each graph
would simply fall along a vertical line. The question now is whether we see a significant
divergence from the vertical alignment within each set.

From inspection of Figure 10.4, we see that we do. For the root nodes, 𝑃 and 𝐼 we see
that we have adjusted to expect 𝑃 = 0 and 𝐼 = 1 to be relatively more common. For 𝑀 ,
we have adjusted to expect that 𝑀 = 1 regardless of 𝐼 for cases assigned to 𝐼 = 0, and to
expect that 𝑀 = 0 regardless of 𝐼 for cases assigned to 𝐼 = 1. Thus, we expect mobilization
to be negatively correlated with inequality, but we have moved away from expecting that the
relationship between the two is causal: note the low share now placed on the 𝑀.01 parameters.
For 𝐷, the most dramatic movement is in favor of the null effect represented by the top nodal
type: As compared to our priors, we now more strongly believe that democratization will occur
regardless of inequality, mobilization, or international pressure (the interpretation of the other
nodal types is given in this footnote1).

In all, we can see quite clearly that we have learned from the data about the shares of types
in the population, and that the direction of movement is overall toward putting less weight on
causal effects among nodes than our flat priors had implied.

10.2 Institutions and Growth

We now return to our model of institutions and growth from Chapter 8. Rather than presup-
posing the probability of different nodal types, however, we seek to build up those beliefs from
data from a large set of cases, using the trained model to then answer a set of both population-
and case-level queries.

1Each digit indicates indicates the potential value of 𝐷 for particular values of 𝐼, 𝑃 and 𝐷 ; specifically the
first digit corresponds to the value of 𝐷 when 𝐼 = 0, 𝑃 = 0, and 𝑀 = 0, the subsequent digits give the
value for 𝐷 when 𝐼, 𝑃, 𝑀 take values (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), and (1, 1, 1),
respectively.
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Figure 10.4: Posterior means of parameters from the democracy model

The structural causal model that we use (shown in Figure 10.5) is the same model that we used
in Chapter 8. However, we build in weaker assumptions, given that we aim to learn about our
model from the data. Specifically, we drop two of the monotonicity assumptions: We no longer
assume that growth (𝑌 ) is monotonic in institutions or in mortality. The only monotonicity
assumption that we retain is with respect to the instrument, mortality (𝑀): Its effect on
institutions (𝑅) cannot be positive. Otherwise, we form flat priors over all nodal types in the
model — building in no assumptions other than the causal structure and monotonicity of 𝑀 ’s
effects. Moreover, as in Chapter 8, we allow for confounding between institutions and growth,
allowing for other unobserved common causes of these variables.

10.2.1 Data

We draw our data from the supplementary material for Rodrik, Subramanian, and Trebbi
(2004)’s paper on the long-run economic effects of institutions. We dichotomize all variables at
their sample median, and so are working with somewhat coarser data than used in the original
paper. Table 10.3 provides a snippet of the dataset.

Unlike in the inequality application, the data here form a rectangular dataset: Rodrik, Sub-
ramanian, and Trebbi (2004) collected measures for all variables for all cases, rather than
gathering more detailed evidence only on a subset of cases (as Haggard and Kaufman (2012)
did in process-tracing only the democratizing cases).

The raw correlations between variables are shown in Table 10.4. We note that these bivariate
relationships are, in general, much stronger (despite the coarsening) than in the data used in
the inequality and democracy application. One thing to notice is that 𝑀 is, in fact, more
strongly correlated with 𝑌 than 𝑅 is—which might give pause about the exclusion restriction,
which assumes that 𝑀 ’s effect on 𝑌 runs only through 𝑅. Also, 𝑀 and 𝐷—which are, by
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Figure 10.5: Institutions and Growth Model

Table 10.3: Data (snippet) derived from Rodrik, Subramanian, and Trebbi (2004)

Country Distance (D) Mortality (M) Institutions (R) Growth (Y)
Angola 0 1 0 0
Argentina 1 0 1 1
Australia 1 0 1 1
Burundi 0 1 0 0
Benin 0 1 0 0
Burkina Faso 0 1 0 0
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Table 10.4: Pairwise correlations in the growth-institutions data. D = Distance from the
Equator, M = Settler Mortality, R = Institutional Rule of Law, Y = Growth

D M R Y
D 1.000 -0.373 0.240 0.291
M -0.373 1.000 -0.369 -0.572
R 0.240 -0.369 1.000 0.494
Y 0.291 -0.572 0.494 1.000

assumption, independent in our model—are quite strongly correlated. We will return to these
apparent tensions between our DAG and the data when we consider model evaluation in
Chapter 16.

10.2.2 Queries

With the data in hand, we now update our model to derive posteriors on the distribution
of model parameters, from which we can then generate answer any causal query about the
model.2

Before looking at the more specific case- and population-level queries, we first ask whether the
data have changed our beliefs, using our priors as a baseline, about the effect of institutions
on growth (possibly conditional on mortality and distance from the equator). The results in
Table 10.5 indicate that they have: whereas our priors implied that 𝑅 has a zero average effect
on 𝑌 , our posterior belief is that 𝑅 has a positive average effect on 𝑌 , raising the probability
of good development outcomes by around 15 percentage points. Our belief about this average
effect is the same for cases with high and low settler mortality.3 We do have different beliefs
about institutions’ effects on the subgroups of the population closer to and further from the
equator, however, with 𝑅’s effect stronger for those countries that are more distant from the
equator. In this sense, 𝐷 and 𝑅 are complements—a feature that can also be seen immediately
from regression analysis.

10.2.2.1 Case-level queries

We now turn to case-level inference. Similar to our procedure in the democratization example,
we do so by considering cases with four different possible combinations of growth outcomes and
institutional quality. For each type of case, we ask whether the cause plausibly explains the
outcome—and how beliefs about that effect would change if we learned about settler mortality

2With CausalQueries this is done using update_model(model, data).
3This makes sense since the ATE query does not condition on 𝑅, and so 𝑀 is 𝑑-separated from 𝑌 in the

model.
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Table 10.5: Posterior beliefs about the average effect of R on Y given M and D.

using given mean sd cred.low cred.high
posteriors - 0.00 0.10 -0.20 0.20
posteriors - 0.15 0.07 0.01 0.30
posteriors M==0 0.15 0.07 0.01 0.30
posteriors M==1 0.15 0.07 0.01 0.30
posteriors D==0 0.13 0.10 -0.06 0.32
posteriors D==1 0.18 0.10 -0.01 0.37

(𝑀), distance from the equator (𝐷), or both. This gives us 16 possible combinations of
underlying values of the four variables, with four possible evidentiary situations: we observe
only 𝑅 and 𝑌 ; we additionally observe 𝑀 only; we additionally observe 𝐷; or we additionally
observe both 𝑀 and 𝐷. We plot our beliefs about the query for each evidentiary situation and
case type. By comparing inferences across evidentiary situations, we can see how informative
our 𝑀 and 𝐷 clues are about case-level causation.

In Figure (Figure 10.6), we plot our beliefs both as derived from the untrained model (using
priors) and as derived from the model trained by the data (using posteriors). (Recall also
that the model here is different from the one we used in Chapter 8 in that we now do not
impose monotonicity restrictions other than that between 𝑀 and 𝑅, so the inferences using
priors here will not be the same as they were in the process-tracing exercise in that chapter.)
Because we have built so little prior knowledge into our model, the 𝑀 and 𝐷 clues are always
uninformative in the untrained model; regardless of what we observe, we believe there is a 0.5
probability that 𝑅 mattered for 𝑌 in every case. But we plot these inferences to throw into
sharp relief the fact that, in this application, the probative value of the clues derives entirely
from data rather than from theoretical assumptions.

We can see that when we encounter a case with weak institutions and low growth (first column),
using the trained model will lead us to believe it likely that the former caused the latter. We
see a parallel result for cases with strong institutions and growth (last column). We can also
see in both columns, by comparing the posterior to the prior, that these inferences are heavily
grounded in the data we have used to update the model, rather than in prior assumptions.
When we turn to the cases with weak institutions and high growth, and vice-versa, we see that
the updated model leads us to believe it less likely that institutions generated the outcome.

Moreover, if we want to collect more information about a given case, both settler mortality
(𝑀) and distance from the equator 𝐷 are informative. Turning first to distance, consider an
𝑅 = 0, 𝑌 = 0 state. When we additionally observe that this state is close to the equator
(𝐷 = 0), we become less confident institutions were the culprit in this case; but we become
more confident that institutions were the problem if we observe the state to be far from the
equator (𝐷 = 1). Likewise, for an 𝑅 = 1, 𝑌 = 1 case, proximity to the equator makes us more
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confident that the strong institutions helped while distance from the equator makes us less so.
This last result may seem surprising given our beliefs that 𝑅 and 𝐷 are complements. 𝑅 and
𝐷 may well be complements for the average treatment effect, but, conditional on 𝑅 = 1 (and
𝑌 = 1) knowing that 𝐷 = 1 reduces confidence that 𝑅 did the work.
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Figure 10.6: Case level inferences given possible observations of distance and mortality.

Second, unlike in the untrained process-tracing model, settler mortality is informative in the
updated model (even though it is not for average treatment effects). Strong institutions are
now believed to be more likely to have caused high growth in places with lower mortality
(see, e.g., Malaysia and Brazil). This result is in line with the confounding logic we discussed
in Section 8.2.3.2 of Chapter 8 in the context of process tracing, where we stipulated beliefs
about selection effects. Note, however, that we have not imposed beliefs about confounding
in the present analysis. Rather, here, we have learned about the confounding from the data.
Put differently, correlations in our beliefs about nodal types have emerged from updating.
Figure 10.7 shows posteriors for our beliefs about the conditional probability of 𝜃𝑌 given
𝜃𝑅. Recall that we began with flat expectations across the shares represented in this figure.
While credibility intervals are large, we can see that we now expect 𝜃𝑌 = 𝜃𝑌

0011—a type for
which 𝑌 responds positively to 𝑅 regardless of 𝑀—to be more common among cases in which
institutions respond negatively to settler mortality (𝜃𝑅 = 𝜃𝑅

01). This is consistent with a world
in which settlers responded to low mortality by building strong institutions specifically in those
places where they rationally expected strong institutions to help.

We can see the learning about this confounding more starkly in Figure 10.8. In each panel of
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the figure, we plot a summary of our beliefs about the probability that institutional strength
has a positive effect on growth against our beliefs that settler mortality has a negative effect
on institutional strength. In the left panel, we plot this relationship for our priors, with each
point representing one draw from our prior over 𝜆. As we can see, the two sets of beliefs about
effects are completely uncorrelated in our priors. In the right panel, we plot our joint posterior
for these two effects: Each point represents our belief about both effects under a single draw
from our posterior over 𝜆. We can see here that the two sets of beliefs are correlated in the
updated model: The more strongly we believe that strong institutions are helpful for growth,
the more strongly we also believe that low settler mortality causes strong institutions.

10.2.2.2 Population-Level Queries

Again the updated model can be used not just to inform inferences about cases but also to
make population-level claims. In Figure 10.9, we graph the posteriors for a set of queries,
conditional on observed data on institutional quality, distance, and settler mortality. The
queries plotted here are parallel to the population-level queries that we answered for the
inequality and democracy model, with the attribution questions presupposing knowledge of 𝑅
and~𝑌 .

In the first row of graphs, we can see that we estimate both positive effects and negative
effects of institutions on growth to be somewhat common in the population. However, we
believe positive effects to be more common than negative effects. Similarly, in the second row
we can see that we think that strong institutions caused the high growth in a higher share of
𝑅 = 1, 𝑌 = 1 cases as compared to the share of 𝑅 = 1, 𝑌 = 0 cases in which we think strong
institutions caused the weak growth.

Looking within more refined subgroups, we see some variation in beliefs about the shares of
cases with causal effects, albeit with quite wide credibility intervals. The largest difference is,
among those cases close to the equator, between those with high and with low settler mortality.
Within the 𝑅 = 1, 𝑌 = 1, 𝐷 = 0 subgroup, we think positive effects are more common among
those cases that experienced low mortality than among those that experienced high mortality,
consistent with the learning about confounding that we have discussed above. Parallel to thi
result, and in keeping with the notion of strategic institutional choice by settlers, we find that
the low-mortality cases are also ones in which we think it less likely that institutions had an
adverse effect on growth in the 𝑅 = 1, 𝑌 = 0, 𝐷 = 0 subgroup.

10.2.3 Explorations: Direct and Indirect Paths from M to Y

Our glance at the raw data suggested that mortality and growth are high, even relative to
the correlation between institutions and growth. This might lead us to wonder whether our
model is correct—in particular, whether we should allow for a direct path from 𝑀 to 𝑌 . In
this subsection, we make and update a model in which we allow for a direct arrow from 𝑀 to
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Table 10.6: Direct and indirect effects of settler mortality on growth

Effect label query mean sd cred.low cred.high
Total Y[M = 0] - Y[M=1] Y[M = 0] - Y[M=1] 0.27 0.08 0.12 0.42
Direct 0 Y[M = 0, R = R[M=0]] - Y[M=1, R = R[M=0]] Y[M = 0, R = R[M=0]] - Y[M=1, R = R[M=0]] 0.19 0.09 0.02 0.36
Direct 1 Y[M = 0, R = R[M=1]] - Y[M=1, R = R[M=1]] Y[M = 0, R = R[M=1]] - Y[M=1, R = R[M=1]] 0.21 0.09 0.04 0.38
Indirect 0 Y[M = 0, R = R[M=0]] - Y[M=0, R = R[M=1]] Y[M = 0, R = R[M=0]] - Y[M=0, R = R[M=1]] 0.06 0.07 -0.05 0.23
Indirect 1 Y[M = 1, R = R[M=0]] - Y[M=1, R = R[M=1]] Y[M = 1, R = R[M=0]] - Y[M=1, R = R[M=1]] 0.08 0.07 -0.03 0.24

𝑌 , as well as the mediated path that runs from mortality to institutions to growth. We can
then pose queries about how settler mortality affects long-run growth, asking how much of the
effect runs through institutions and how much of this effect runs through all other channels
(i.e., “directly”).

To maintain simplicity here, we exclude 𝐷 from the new model and work with a DAG of the
form:

𝑀 → 𝑅 → 𝑌 ← 𝑀; 𝑌 ↔ 𝑅

So we now have both a direct path from 𝑀 to 𝑌 and the mediated path from 𝑀 to 𝑌 that
runs through 𝑅. We maintain the possibility of unobserved confounding between 𝑅 and 𝑌 .
Note that dropping 𝐷 represents a permissible reduction of the original model since 𝐷 was a
parent to only one node in that model.

In our pathway analysis, we will distinguish between the “indirect” and “direct” effects of
settler mortality on growth. We define these quantities more formally below, but first, we
give a basic intuition for the difference. By an “indirect” effect, we mean an effect that runs
along the 𝑀 → 𝑅 → 𝑌 pathway: an effect that, for its operation, depends both on mortality’s
effect on institutions and on institutions’ effect on growth. By a “direct” effect, we mean an
effect that operates via the direct 𝑀 → 𝑌 pathway. Importantly, labeling this effect “direct”
does not imply that there are no mediating steps in this causal pathway. It means only that
we have not included any of this pathway’s mediating steps in the DAG. Thus, the “direct”
effect does not represent a specific alternative mechanism to the institutional one. Rather, it
captures a residual: the effect of settler mortality on long-run growth that operates through
all mechanisms other than the one mediated by institutions.

In Table 10.6, we report results for a pathway analysis at the population level. First, we report
our posterior belief about the total average effect of settler mortality on long-run growth, with
a posterior mean of 0.272. Then we report the portion of these effects that run through each
pathway.

First, we pose two versions of the direct-effects query, intended to get at the effect of settler
mortality that does not run through mortality’s effect on institutions. To frame a direct-
effects query, we need to imagine a manipulation in which the mortality level is changed, but
institutions remain fixed. There are two versions of such a query, however. In the first version,
labeled “Direct 0”, we report the expected change in long-run growth under an imagined
manipulation in which we change mortality from 0 to 1 while fixing institutions at the value
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they would take on if settler mortality were set to 0. In the second version (“Direct 1”), we
imagine the same change in mortality but fix institutions at the value they would take on if
settler mortality were set to 1. The difference between these queries is potentially important
since mortality’s direct effect might depend on institutional conditions. As we can see, we get
quite similar posterior means from these two direct-effect queries (0.195 vs. 0.211).

We turn then to estimating the effect that is operating through institutions. This indirect-
effects query asks the following: What change in growth occurs if we change institutions as
they would change if there were a change in settler mortality but with settler mortality in
fact held constant (so that no direct effect can be operating). Again, there are two versions of
this query: The first (“Indirect 0”) holds mortality fixed at 0 while the second (“Indirect 1”)
holds mortality fixed at 1. For both, we posit the change in institutions that would happen if
mortality were changed from 0 to 1. As we can see from the fourth and fifth rows of Table 10.6,
we get similar estimates of this indirect effect from the two queries (0.061 and 0.077).

Overall, Table 10.6 suggests that both causal pathways are in operation. Yet direct effects
appear far stronger than indirect effects. That is to say, we estimate that more of settler
mortality’s effect on long-run growth runs through channels other than the institutional mech-
anism, than runs through that mechanism. The strongest effect is estimated to be the direct
effect with institutions fixed at whatever they would take on if mortality were high. We esti-
mate the weakest pathway to be the indirect effect in places with low mortality. Note that the
first query, the total effect, is equal to the sum of “Direct 0” and “Indirect 1” and (equivalently)
to the sum of “Direct 1” and “Indirect 0”; this decomposition is documented, for instance, in
Imai, Keele, and Tingley (2010).

With our updated model of the population in hand, we can now ask similar questions at the
case level. Suppose, for instance, that we see a case that had high settler mortality and low
growth; we also observe a suspected mediator of mortality’s effect, seeing that the case has
weak institutions. One question we can ask about this case is the total case-level effect: What
is the probability that high settler mortality caused low growth, through any mechanism, in
this case, given our observations in this case? We can then delve further to ask about the
pathway operating in the case: about the probability that settler mortality caused low growth
through institutions or through an alternative pathway.

The results of these case-level pathway queries — drawn from a model informed by the large-
𝑁 data — are reported in Table 10.7. In the top row, we see that the probability that
high mortality was a cause of low growth in the case is estimated to be 0.648. We estimate
the probability that high settler mortality caused the low growth through a noninstitutions
pathway to be somewhat lower, at 0.542. And the probability that high settler mortality
caused low growth, specifically via the institutional pathway, is much lower, at 0.252.

This result is quite striking: Even when institutions take precisely the form, we expect them
to take if the institutional mechanism is operating (i.e., they are weak in a high-mortality,
low-growth case), our trained model tells us that we should still believe it to be about twice
as likely that high mortality mattered through a non-institutional mechanism than that it
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Table 10.7: Direct and indirect effects of settler mortality on growth for a case with high
mortality, weak institutions, and low growth

query Y[M = 0] > Y[M = 1] Y[M = 0, R = R[M=1]] > Y[M = 1, R = R[M = 1]] Y[M = 1, R = R[M=0]] > Y[M = 1, R = R[M = 1]]
Formula Y[M = 0] > Y[M = 1] Y[M = 0, R = R[M=1]] > Y[M = 1, R = R[M = 1]] Y[M = 1, R = R[M=0]] > Y[M = 1, R = R[M = 1]]
given M==1 & Y ==0 & R == 0 M==1 & Y ==0 & R == 0 M==1 & Y ==0 & R == 0
Estimate 0.65 0.54 0.25
Given M=1 & Y =0 & R = 0 M=1 & Y =0 & R = 0 M=1 & Y =0 & R = 0

mattered via institutions. The results in Table 10.7 also have implications for the effects of
alternative hypothetical manipulations. They suggest that changing mortality in this kind
of case from high to low—while keeping institutions weak—would be more likely to improve
outcomes than would keeping mortality high but changing institutions to whatever value they
would take on if mortality were low.

Overall, these results suggest that any analysis of the long-run effects of settler mortality
on economic growth that constrains such effects to run through institutions will likely get
the story wrong. Notably, these findings also pose a challenge to the instrumental-variable
strategy underlying Rodrik, Subramanian, and Trebbi (2004) and Acemoglu, Johnson, and
Robinson (2001) analyses, which (via the exclusion restriction) involve the assumption that
settler mortality affects growth only via institutions.

10.3 Conclusion

We close with a few substantive and methodological conclusions from the analyses in this
chapter.

Turning first to substantive conclusions from the inequality and democratization analysis, we
saw in Figure 10.4 that most movements in our beliefs on nodal types went in the direction
of reduced confidence in causal effects. We saw in particular a sharp increase in our posterior
on the share of cases for which 𝐼 has no effect on 𝑀 , and in the share of cases that would
have democratized regardless of the values of all other nodes in the model. These findings
tilt, above all, against strong confidence that inequality affects mass mobilization or that
inequality, mobilization, or international pressure affected democratization during the period
under examination. Something generated the Third Wave of democratization in the 1980s and
1990s, but these findings suggest that the democratizations we see are not well explained by
patterns of inequality, either at the population or case level.

We see two primary takeaways from our updating of the institutions and growth model. First,
the analysis lends support to the basic claim that rule-of-law institutions matter for post-
colonial countries’ rates of economic growth. More interestingly, we think, the analysis yields
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evidence of a selection effect in which the places that had strong rule-of-law institutions im-
posed on them by colonizing powers were on average places in which such institutions were
more likely to spur higher rates of long-run growth. If true, the policy implications are poten-
tially quite stark: it suggests that creating “strong” institutions in places that do not currently
have them would be unlikely to generate the same positive effects that we see in the cases that
do have them.

The analyses in this chapter also illustrate a number of integrative payoffs to multi-case causal-
model-based inference. For one thing, we have seen how readily the approach can handle data
drawn from a mix of data-collection strategies, such as the collection of data on a small number
of nodes for a large number of cases together with more intensive data collection on a subset
of these. We have shown how, from a single process of updating, we can then answer causal
questions of any kind at either the population or the case level: For both applications, we
updated our model with the data just once, and then simply posed the query of interest to
the same posterior distribution over 𝜆.

Further, the institutions and growth application nicely demonstrates how the approach allows
for inferences at one level of analysis to be informed by learning at another level. In particular,
we saw how the probative value of a given node observation (a clue) could be shaped by
learning from multi-case data about population-level relationships. Indeed, for the Institutions
and Growth application, beginning with a model in which no node would have had probative
value for 𝑅’s effect on 𝑌 , we generated probative value for 𝐷 and 𝑀 from the data. The
approach thus provides a way of empirically justifying process-tracing inferences. By the same
token the analysis of the democracy model poses a challenge to claims about the probative
value of data on mobilization and international pressure for understanding democratization.

Finally, we see that in this framework, confounding is not just something we have to worry
about, but also something we can usefully learn about. Confounding becomes just another
set of model parameters (nodal type shares conditional on other nodes’ values); and because
the possible values of these parameters imply different likelihoods for different data patterns,
we can update on confounding from the data — even when we cannot observe the source of
confounding itself (which is left unobserved in the institutions and growth model). What’s
more, the institutions and growth example illustrates how learning about confounding can be
helpful in nonobvious ways: Recall how updating on confounding between 𝑀 and 𝑌 made 𝑀
an informative clue about 𝑅’s effect on 𝑌 , where it had not been before.

The findings presented here also make clear that even a large amount of data will not always
move our beliefs about a query of interest. As we saw in the democracy model, the case-level
conclusions we draw about 𝐼 ’s effect on 𝐷 do not change after updating with a substantial
amount of data. This is simply because the patterns in the data do not happen to pull against
our starting beliefs about the relationship between these two variables. In the institutions
and growth model, we see a very different picture, with the data substantially moving our
inferences.
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11 Mixing Models

Chapter summary

We show how we can integrate inferences across models. We provide four examples of
situations in which, by combining models, researchers can learn more than they could
from any single model. Examples include situations in which researchers seek to integrate
inferences from experimental and observational data, seek to learn across settings, or seek
to integrate inferences from multiple studies.

In Chapter 9 and Chapter 10, we described one form of integration that causal models can
enable: the systematic combination of (what we typically think of as) qualitative and quanti-
tative evidence for the purposes of drawing population- and case-level causal inferences. One
feature of the analyses we have been considering so far is that the integration is essentially
integration of inferences in the context of a single study. We are, for instance, integrating
quantitative evidence for a large set of cases with qualitative evidence for a subset of those
cases. We are, moreover, drawing inferences from the set of cases we observe to a population
within which that sample of cases is situated.

In this chapter, we examine how we can use causal models to integrate across studies or
settings that are, in a sense, more disjointed from one another: across studies that examine
different causal relationships altogether; study designs that require different assumptions about
exogeneity; and contexts across which the causal quantities of interest may vary.

1. Integrating across a model Often, individual studies in a substantive domain examine
distinct segments of a broader web of causal relationships. For instance, while one study
might examine the effect of 𝑋 on 𝑌 , another might examine the effect of 𝑍 on 𝑌 , and
yet another might examine the effect of 𝑍 on 𝐾. We show in this chapter how we can,
under some conditions, integrate across such studies in ways that yield learning that we
could not achieve by taking each study on its own terms.

2. Integrating between experimental and observational studies One form of multi-
method research that has become increasingly common is the use of both observational
and experimental methods to study the same basic causal relationships. While an ex-
periment can offer causal identification in a usually local or highly controlled setting, an
observational analysis can often shed light on how the same relationships operate “in
the wild,” if with a greater risk of confounding. Often, observational and experimental
results are presented in parallel, as separate sources of support for a causal claim. We
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show how, in a causal model setup, we can use experimental and observational data
jointly to address questions that cannot be answered when the designs are considered
separately.

3. Transporting knowledge across contexts Researchers are sometimes in a situation
where they can identify causal quantities in a particular setting—say, from a random-
ized controlled trial implemented in a specific local context—but want to know how those
inferences travel to other settings. Would the intervention work differently in other coun-
tries or regions? As we will explain, we can draw inferences about causal relationships
in other contexts with an appropriately specified causal model and the right data from
the original context.

4. Models in hierarchies. Sometimes, researchers learn about the same types of processes
in different settings. By thinking of the processes in each setting as deriving from a family
of processes, researchers can learn from observations in one setting about causal processes
in another and also learn about the nature of heterogeneity between settings.

Before delving into the details of these strategies, we make one key qualification explicit:
each of these approaches requires us to believe that setting-~or study-specific causal model
can be nested within a lower level, “encompassing,” model that operates across the multiple
settings that we are learning from and want to draw inferences about. Encompassing models,
of course, can specifically take heterogeneity across settings into account by including in the
model moderators that condition the effects of interest. But we have to believe that we have
indeed captured in the model any ways in which relationships vary across the set of contexts
across which we are integrating evidence or transporting inferences.

Put differently, and perhaps more positively, we see social scientists commonly seeking to
transport knowledge or combine information informally across studies and settings. Often such
efforts are motivated, sometimes implicitly, by an interest in or reliance on general theoretical
propositions. The approaches that we describe below ask the researcher to be explicit about the
underlying causal beliefs that warrant that integration while also ensuring that the integration
proceeds in a way that is logically consistent with stated beliefs.

11.1 A Jigsaw Puzzle: Integrating across a Model

Generating knowledge about a causal domain often involves cumulating learning across stud-
ies that each focus on some specific part of the domain. For instance, scholars interested in
the political economy of democratization might undertake studies focused on the relationship
between inequality and mass protests; studies on the role of mass mobilization in generating
regime change; pathways other than mass mobilization through which inequality might affect
democratization; studies of the effect of international sanctions on the likelihood that autoc-
racies will democratize; and studies of the effects of democratization on other things, such as
growth or the distribution of resources.
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We can think of these studies as each analyzing data on a particular part of a broader, more
encompassing causal model. In an informal way, if findings “hold together” reasonably in-
tuitively, we might be able to piece together an impression of the overall relations among
variables in this domain. Yet an informal approach becomes more difficult for complex models
or data patterns and, more importantly, will leave opportunities for learning unexploited.

Consider the simple DAG in Figure 11.1, in which both 𝑋 and 𝑍 are causes of 𝑌 , and 𝑍 also
causes 𝐾.

K

X

Y

Z

Figure 11.1: A DAG containing nodes that feature in different studies.

Now imagine three studies, all conducted in contexts in which we believe this model to hold:

1. Study 1 is an RCT in which 𝑋 is randomized, with data collected on both 𝑌 and 𝐾. 𝑍
is not observed.

2. Study 2 is a factorial experiment, in which 𝑋 and 𝑍 are independently randomized,
allowing an examination of the joint effects of 𝑋 and 𝑍 on 𝑌 . 𝐾 is not observed.

3. Study 3 is an experiment randomizing 𝑍, with only 𝐾 observed as an outcome. 𝑋 and
𝑌 are not observed.

Now, let’s say that our primary interest is in the relationship between 𝑋 and 𝑌 . Obviously,
Study 1 will, with a sufficiently large sample, perform just fine in estimating the average
treatment effect of 𝑋 on 𝑌 . However, what if we are interested in a case-oriented query, such
as the probability of causation: the probability, say, that 𝑋 = 1 caused 𝑌 = 1 in a given
𝑋 = 1, 𝑌 = 1 case?

We know that within-case, process-tracing clues can sometimes provide probative value on
case-level estimands like the probability of causation, and we have observed 𝐾 in the Study 1
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Table 11.1: Clue 𝐾 is uninformative in all three studies

Study query using mean sd cred.low cred.high
1 Y[X=0] == 0 posteriors 0.670 0.108 0.433 0.856

Y[X=0] == 0 posteriors 0.641 0.111 0.394 0.835
2 Y[X=0] == 0 posteriors 0.662 0.130 0.366 0.874

Y[X=0] == 0 posteriors 0.661 0.131 0.361 0.874
3 Y[X=0] == 0 posteriors 0.499 0.153 0.207 0.787

Y[X=0] == 0 posteriors 0.500 0.120 0.265 0.731

cases. So what if we combine the 𝑋, 𝑌 , and 𝐾 data?

A simple analysis of the graph tells us that 𝐾 cannot help us learn about 𝑌 ’s potential outcomes
since 𝐾 and 𝑌 are 𝑑-separated by 𝑍, and we have not observed 𝑍 in Study 1. We see this
confirmed in Table 11.1.

In the first pair of rows, we show the results of analyses in which we have simulated data from
the whole model, then updated using the Study 1 observations. We give here the posterior
mean on the probability of causation for an 𝑋 = 𝑌 = 1 case, conditional on each possible
value that 𝐾 might take on. As we can see, our beliefs about the estimand remain essentially
unaffected by 𝐾’s value, meaning that it contains no information about 𝑋’s effect in the
case.

We see that the same thing is true for the other studies. In Study 2, we have not used 𝐾 to
update the model, and so have not learned anything from the data about 𝐾’s relationship to
the other variables. Thus, we have no foundation on which to ground the probative value of
𝐾. In Study 3, we understand the 𝑍, 𝐾 relationship well, but know nothing quantitatively
about how 𝑍 and 𝑋 relate to 𝑌 . Thus, we have learned nothing from Study 3 about what
observing 𝐾 might tell us about the effect of 𝑋 on 𝑌 .

However, we can do much better if we combine the data and update jointly across all model
parameters. The results are shown in Table 11.2. Updating simultaneously across the studies
allows us, in a sense, to bridge across inferences. In particular, inferences from Study 2 make 𝑍
informative about 𝑌 ’s potential outcomes under different values of 𝑋. Meanwhile, inferences
from the data in Study 3 allow us to use information on 𝐾 to update on values for 𝑍. As
we now see in rows 1 and 2, having updated the model in an integrated fashion, 𝐾 now is
informative about the probability of causation, with our posterior mean on this query changing
substantially depending on the value of 𝐾 that we observe in a case.

Rows 3–4 highlight that the updating works through inferences that K allows us to make
about 𝑍: We see that if 𝑍 is already known (we show this for 𝑍 = 1, but it holds for 𝑍 = 0
as well), then there are no additional gains from the knowledge of 𝐾.
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Table 11.2: Clue is informative after combining studies linking 𝐾 to 𝑍 and 𝑍 to 𝑌

query using mean sd cred.low cred.high
Y[X=0] == 0 posteriors 0.82 0.08 0.64 0.93
Y[X=0] == 0 posteriors 0.62 0.13 0.36 0.85
Y[X=0] == 0 posteriors 0.85 0.08 0.67 0.96
Y[X=0] == 0 posteriors 0.85 0.08 0.67 0.96

We devote Chapter 15 to a discussion of how we justify a model. However, we note already
that in this example, we have a form of model justification. We have seen an instance in
which a researcher (examining a case in Study 1) might wish to draw inferences using 𝐾, but
does not have anything in study that justifies using 𝐾 for inference. owever, with access to
additional data from other studies and making use of a lower level model, the researcher now
has a justification for a process tracing strategy.

11.2 Combining Observational and Experimental Data

Experimental studies are often understood as the “gold standard” for causal inference. This is,
in particular, because of the ability of a randomized trial (given certain assumptions, such as
“no spillovers”) to eliminate sources of confounding. By design, an experiment removes from
the situation processes that, in nature, would generate a correlation between selection into
treatment and potential outcomes. An experiment thereby allows for an unbiased estimate of
the average causal effect of the treatment on the outcome.

At the same time, an interesting weakness of experimental studies is that, by dealing so
effectively with selection into treatment, they limit our ability to learn about selection and its
implications in the real world. Often, however, we want to know what causal effects would be
specifically for units that would in fact, take up a treatment in a real-world, nonexperimental
setting. This kind of problem is studied, for example, by Knox et al. (2019).

Consider, for instance, a policy that would make schooling subsidies available to parents, with
the aim of improving educational outcomes for children. How would we know if the policy was
effective? A source of confounding in an observational setting might be that those parents who
apply for and take up the subsidy might also be those who are investing more in their children’s
education in other ways, as compared to those parents who do not apply for the subsidy. The
result is that when we compare those in treatment against those not in treatment we can
expect to see a gap even if the subsidies are ineffective. To eliminate this problem, we might
design an experiment in which parents are randomly assigned to receive (or not receive) the
subsidy and compare outcomes between children in the treatment and control groups. With
a no-spillovers assumption, we can extract the ATE of the receipt of subsidies.
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What this experiment cannot tell us, however, is how much the policy will boost educational
outcomes outside the experiment. That is because the causal quantity of interest, for answering
that question, is not the ATE: It is the average treatment effect for the treated (ATT), given
real-world selection effects. That is, the policymaker wants to know what the effect of the
subsidy will be for the children of parents who select into treatment. One could imagine the
real-world ATT being higher than the ATE if, for instance, those parents who are informed and
interested enough to take up the subsidy also put the subsidy to more effective use. One could
also imagine the ATT being lower than the ATE if, for instance, there are diminishing marginal
returns to educational investments, and the self-selecting parents are already investing quite
a lot.

Even outside a policy context, we may be interested in the effect of a causal condition where
that causal condition emerges. To return to our inequality and democracy example, we may
want to know what would have happened to autocracies with low inequality if they had
had high inequality—the standard average-treatment effect question. But we might also be
interested in knowing how much of a difference high inequality makes in the kinds of cases
where high inequality tends to occur—where the effect could be very different.

With such questions, we are in a sort of bind. The experiment cannot tell us who would
naturally select into treatment and what the effects would be for them. Yet an observational
study faces the challenge of confounding. Ideally, we would like to be able to combine the best
features of both: use an experiment to deal with confounding and use observational data to
learn about those whom nature assigns to treatment.

We can achieve this form of integration with a causal model. We do so by creating a model
in which random assignment is nested within a broader set of assignment processes. We plot
the model in Figure 11.2

At the substantive core of this model is the 𝑋 → 𝑌 relationship. However, we give 𝑋 a parent
that is an unconfounded root node, 𝑍, to capture a random-assignment process. We give 𝑋
a second parent, 𝑂, that is confounded with 𝑌 : 𝑂 here represents the observational scenario.
Finally, we include a “switch” variable, 𝑅, that determines whether 𝑋 is randomly assigned
or not. So when 𝑅 = 1, 𝑋 is determined solely by 𝑍, with 𝑋 = 𝑍. When 𝑅 = 0, we are in an
observational setting, and 𝑋 is determined solely by the confounded 𝑂, with 𝑋 = 𝑂.

A few notes on the parameter space: Parameters allow for complete confounding between 𝑂
and 𝑌 , but 𝑍 and 𝑌 are unconfounded. 𝑋 has only one causal type since its job is to operate
as a conveyor belt, simply inheriting the value of 𝑍 or 𝑂, depending on 𝑅.

Note also that this model assumes the exclusion restriction that entering the experimental
sample (𝑅) is not related to 𝑌 other than through the assignment of 𝑋.

Now, let us imagine true parameter values such that 𝑋 has a 0.2 average effect on 𝑌 . However,
the effect is different for those who are selected into treatment in an observational setting: it
is positive (0.6) for cases in which 𝑋 = 1 under observational assignment, but negative (−0.2)
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Figure 11.2: A model that nests an observational and an experimental study. The treatment
𝑋 either takes on the observational value 𝑂 or the assigned values 𝑍 depending
on whether or not the case has been randomized 𝑅.

for cases in which 𝑋 = 0 under observational assignment. (See Supplementary Material for
complete specification.)

When we use the model to analyze the data, we will start with flat priors on the causal types.

The implied true values for the estimands of interest, and our priors on those estimands, are
displayed in Table 11.3.

Now, we generate data from the model and then update the model using these data.

We begin by analyzing just the observational data (cases where 𝑅 = 0) and display the results
in Table 11.4. Recall that the true average effect of 𝑋 on 𝑌 is 0.2. Naive analysis of the

Table 11.3: Estimands under different assignment schemes

label query given using mean sd cred.low cred.high Using
ATE c(Y[X=1] - Y[X=0]) - parameters 0.2 0.20 0.20 truth
ATE c(Y[X=1] - Y[X=0]) - priors 0.0 0.26 -0.51 0.52 priors
ATE c(Y[X=1] - Y[X=0]) R==0 parameters 0.2 0.20 0.20 truth
ATE c(Y[X=1] - Y[X=0]) R==0 priors 0.0 0.26 -0.51 0.52 priors
ATE c(Y[X=1] - Y[X=0]) R==1 parameters 0.2 0.20 0.20 truth
ATE c(Y[X=1] - Y[X=0]) R==1 priors 0.0 0.26 -0.51 0.52 priors
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Table 11.4: Inferences on the ATE from differences in means

Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
X 0.797 0.029 27.373 0 0.739 0.854 191

Table 11.5: Estimates on the ATE for observational (𝑅 = 0) and experimental (𝑅 = 1) set.

label query given using mean sd cred.low cred.high
ATE c(Y[X=1] - Y[X=0]) - posteriors 0.217 0.031 0.158 0.276
ATE c(Y[X=1] - Y[X=0]) R==0 posteriors 0.217 0.031 0.158 0.276
ATE c(Y[X=1] - Y[X=0]) R==1 posteriors 0.217 0.031 0.158 0.276

observational data, taking a simple difference in means between the 𝑋 = 0 and 𝑋 = 1 cases,
yields a strongly upwardly biased estimate of that effect, of 0.8.

In contrast, when we update on the full causal model and use both the experimental and obser-
vational data, we get the much more accurate results shown in Table 11.5. Moving down the
rows, we show here the estimate of the unconditional ATE, the estimate for the observational
context (𝑅 = 0), and the estimate for the experimental context (𝑅 = 1). Unsurprisingly, the
estimates are identical across all three settings since, in the model, 𝑅 is 𝑑-separated from 𝑌 by
𝑋, which is observed. And, as we see, the posterior means are very close to the right answer
of 0.2.

Since the model used both the experimental and the observational data, we might wonder
from where the leverage was derived: Did the observational data improve our estimates of
the average treatment effect, or do our inferences emerge strictly from the experimental data?
In the book’s Supplementary Material, we show the results that we get when we update
using experimental data only. Comparing the two sets of results, we find there that we do
indeed get a tightening of posterior variance and a more accurate result when we use both the
observational and experimental data, but the experimental data alone are quite powerful, as
we should expect for an estimate of the ATE. The observational data do not add a great deal
to an ATE estimate, and the gains from observational data would be smaller still (and the
experimental results even more accurate) if the experimental sample were larger.

However, what we can learn about uniquely from this model and the combined observational
and experimental data is heterogeneity in effects between those in treatment and those in
control in the observational setting. In Table 11.6, we display the results of ATT and average
treatment effect for the control (ATC) queries of the updated model. To estimate the ATT we
pose an ATE query while conditioning on 𝑋 = 1, while for an ATC query we pose the ATE
query while conditioning on 𝑋 = 0. In the first two rows, we see that, in the experimental
setting (conditioning on 𝑅 = 1), the average effect of 𝑋 on 𝑌 is the same in both the treated
and control groups, exactly as we would expect under random assignment. In the third row,
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Table 11.6: Effects of 𝑋 conditional on 𝑋 for units that were randomly assigned or not. Ef-
fects of 𝑋 do not depend on 𝑋 in the experimental group, but they do in the
observational group because of self selection.

label query given using mean sd cred.low cred.high
ATE c(Y[X=1] - Y[X=0]) R==1 & X==0 posteriors 0.217 0.031 0.158 0.276
ATE c(Y[X=1] - Y[X=0]) R==1 & X==1 posteriors 0.217 0.031 0.158 0.276
ATE c(Y[X=1] - Y[X=0]) R==0 & X==0 posteriors -0.184 0.027 -0.235 -0.131
ATE c(Y[X=1] - Y[X=0]) R==0 & X==1 posteriors 0.599 0.047 0.505 0.690

we see the estimate of 𝑋’s average effect for those assigned “by nature” to the control group
in the observational setting, extracting a result close to the “true” value of −0.2. The final
row shows our estimate of the treatment effect for those who are selected into treatment in
the observational setting, again getting close to the answer implied by the underlying data-
generating process (0.6).

In sum, we can learn nothing about the observational ATT or ATC from the experimental
data alone, where the ATT and ATC are the same quantity. And in the observational data
alone, we are hobbled by confounding of unknown direction and size. What the mixed model
and data, in effect, are able to do is to let us (a) learn about the ATE from experimental data,
(b) use experimental inferences on the ATE to separate true effects from confounding in the
observational data and thus learn about the direction and size of the confounding in those data,
and (c) estimate the treatment effect for the 𝑋 = 0 group and for the 𝑋 = 1 group, respectively,
in the observational data using knowledge about confounding in these data. By mixing the
experimental and observational data, we can learn about how the treatment has affected those
units that, in the “real” world of the observational setting, selected into treatment and about
how the treatment would affect those that selected into control.

It is not hard to see why the observational ATT and ATC might be of great interest to decision-
makers where strong causal heterogeneity is a possibility. Imagine a situation, for instance,
in which the ATE was the same as in our previous example, but with the negative effects
arising in the group that naturally selects into treatment and a positive effect for those that
naturally do not. Based on the experimental data alone, we might conclude that the policy
that makes 𝑋 = 1 available is a good bet, given its positive ATE (assuming, of course, that
𝑌 = 1 is a valued outcome). And, of course, the observational data alone would not allow
us to confidently conclude otherwise. What the integrated analysis can reveal, however, is
that 𝑋 in fact has a negative mean effect on those who would be most likely to take up the
treatment. The strong positive effect for the control strongly shapes the experimental results
but will go unrealized in the real world. In a similar vein, these estimates can aid causal
explanations. Seeing the positive ATE might lead us to infer that most of the 𝑋 = 1, 𝑌 = 1
cases we observe in the world are ones in which 𝑋 = 1 caused 𝑌 = 1. The observational ATT
estimates would point in a very different direction, however, indicating that these are actually
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the cases in which 𝑋 is least likely to have a positive effect and, thus, where 𝑌 = 1 was most
likely generated by some other cause.

We note that the results here relate to the LATE theorem (Angrist and Imbens 1995). Imagine
using data only on (a) the experimental group in control and (b) the observational group, some
of whom are in treatment. We can conceptualize our design as one in which the observational
group is “encouraged” to take up treatment, allowing us to estimate the effect for the “compli-
ers” in the observational setting: those that self-select into treatment. Conversely, we could
use data only on (a) the experimental group in treatment and (b) the observational group,
some of whom are in control. This is a design in which the observational group is “encouraged”
to take up the control condition, allowing us to estimate the effect for the “compliers” in this
group (those that self select into control).

11.3 Transportation of Findings across Contexts

Sometimes, we study the effect of 𝑋 on 𝑌 in one context (a country, region, or time period, for
instance) and then want to make inferences about these effects in another context (say, another
country, region, or time period). We may face the challenge that effects are heterogeneous, and
that conditions that vary across contexts may be related to treatment assignment, outcomes,
and selection into the sample. For example, we might study the relationship between inequality
and democratization in low-income countries and then want to know how those effects travel
to middle-income settings. However, the level of income may have implications jointly for the
level of inequality and for how likely inequality is to generate regime change, meaning that
causal effects uncovered in the first context cannot be assumed to operate the same way in the
second context.

This is the problem studied by Pearl and Bareinboim (2014). In particular, Pearl and Barein-
boim (2014) identify the nodes for which data are needed to “license” external claims, given a
model.

We illustrate with a simple model in which an observable confounder has a different distribution
across contexts. In the model drawn in Figure 11.3, Context determines the distribution of
the confounder, 𝑊 . We set a restriction such that the value of 𝑊 in Context 1 is never less
than the value of 𝑊 in Context 0; our priors are otherwise flat over the remaining nodal types
in the model.

We show priors and true values for the estimands, drawn from a “true” set of parameter values
that we have posited, in Figure 11.4. We see that the incidence of 𝑊 = 1 is higher in Context
1 than in Context 0, both in our priors and in the “truth” posited by the assigned parameter
values. The “true” ATE of 𝑋 on 𝑌 is also higher in Context 1, though this is not reflected
in our priors. The average treatment effect conditional on 𝑊 is the same in both contexts,
whether we work from priors or assigned parameter values, as it must be given the model.
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Figure 11.3: Extrapolation when confounders have different distributions across contexts

That is, in this model the ATE varies conditional on 𝑊—and it varies conditional only on
𝑊 .

We now update the model using data from one context and then see if we can transport those
findings to the other context. Specifically, we update using data on 𝑋, 𝑌 , and 𝑊 from Context
0. We then use the updated beliefs to draw inferences about Context 1, using data only on 𝑊
from Context 1. In Figure 11.5, we show our posteriors on the queries of interest as compared
to the truth, given the “true” parameter values we have posited.

We see that we have done well in recovering the effects, both for the context we studied (i.e.,
in which we observed 𝑋 and 𝑌 ) and for the context we did not study. We can think of the
learning here as akin to post-stratification. We have learned from observing 𝑋, 𝑌 , and 𝑊 in
Context 0 how 𝑋’s effect depends on 𝑊 . Then we use those updated beliefs when confronted
with a new value of 𝑊 in Context 1 to form a belief about 𝑋’s effect in this second context.
Of course, getting the right answer from this procedure depends, as always, on starting with
the a good model.

We can also see, in Figure 11.5, what would have happened if we had attempted to make the
extrapolation to Context 1 without data on 𝑊 in that context. We see a very large posterior
variance. The high posterior variance here captures the fact that we know things could be
different in Context 1, but we don’t know in what way they are different. So we don’t learn
much, but at least we know that we don’t.
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Figure 11.4: Priors and true values (parameters) for three estimands: the frequency of 𝑊 the
effect of 𝑋 on 𝑌 and the effect conditional on 𝑊 ∶ 1
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Figure 11.5: Extrapolation when two contexts differ on 𝑊 and 𝑊 is not observable in target
context. Posteriors and true values (parameters) for the average effect the average
effect conditional on 𝑊 (CATE) and the incidence of 𝑊 for two contexts.
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11.4 Multilevel Models, Meta-analysis

A key idea in Bayesian meta-analysis is that when we analyze multiple studies together, not
only do we learn about common processes that give rise to the different results seen in different
sites, but we also learn more about each study from seeing the other studies.

A classic setup is provided in Gelman et al. (2013), in which we have access to estimates of
effects and uncertainty in eight sites (schools), (𝑏𝑗, 𝑠𝑒𝑗)𝑗∈{1,2,…,8}. To integrate learning across
these studies we employ a “hierarchical model” that treats each 𝑏𝑗 as a draw from distribution
𝑁(𝛽𝑗, 𝑠𝑒𝑗) (and, in turn treats each 𝛽𝑗 is a draw from distribution 𝑁(𝛽, 𝜎)). In that setup we
want to learn about the superpopulation parameters 𝛽, 𝜎, but we also get to learn more about
the study-level effects (𝛽𝑗)𝑗∈{1,2,…,8} by studying them jointly.

A hierarchical model like this allows us to think about the populations in our study sites as
themselves drawn from a larger population (“superpopulation”) of settings. And, crucially, it
allows us, in turn to use data in the study sites to learn about that broader superpopulation
of settings.

Although often used in the context of linear models with parameters for average causal effects,
this logic works just as well with the kinds of causal models we have been using in this book.

Let’s review how our analytic setup has worked so far. At each node in a causal model, we
conceptualize a given case as having a particular nodal type. The case’s nodal type is drawn
from a distribution of nodal types in the population of cases from which this case has been
drawn. When we do process tracing, we consider that population-level distribution to be a set
of fixed shares of nodal types in the population: Say, for node 𝑌 , we might believe that half
the cases in the population are 𝜆𝑌

01, a quarter are 𝜆𝑌
00, and a quarter are 𝜆𝑌

11. We then use
data from the case to update on the case’s nodal types (or on the combination of nodal types
that correspond to some case-level query), given the population-level shares.

When we engage in population-level inference, we begin with uncertainty about the population-
level shares of types, and we express our prior beliefs about those shares as a Dirichlet distribu-
tion. So, for instance, our beliefs might be centered around a 𝜆𝑌

01 = 0.5, 𝜆𝑌
00 = 0.25, 𝜆𝑌

11 = 0.25
breakdown of shares in the population; and we also express some degree of uncertainty about
what the breakdown is. Now, when we analyze data on some number of cases, we can up-
date both on those cases’ types and on our beliefs about the distribution of types in the
population—perhaps shifting toward a higher share of 𝜆𝑌

01’s (and with a change in the distri-
bution’s variance).

As in the last section, we can also build a model in which there are multiple settings, possibly
differing on some population-level characteristics. Fundamentally, however, the setup in the
last section still involved population-level inference in that we were assuming that the type
shares (𝜆 values) are the same across settings. The settings might differ in the value of a
moderating variable, but they do not differ in the shares of cases that would respond in any
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given way to the moderator (and other causal conditions). The data allow us to update on
what those common, cross-setting type proportions are.

When we build a hierarchical model, each case is still understood as being embedded within
a population: our cases might be citizens, say, each embedded within a country. The key
difference from population-level inference is that we now conceive of there being multiple
populations—say, multiple countries—each drawn from a population of populations, or super-
population. Now, we think of each population (country) as having its own set of type shares for
each node. In practice we think of each country’s type shares as being drawn from a Dirichlet
distribution of type shares (for each node) that lives at the superpopulation level. Moreover,
we are uncertain about what that distribution at the superpopulation level is. We are uncer-
tain about what type proportions the superpopulation-level distribution is centered around,
and we are uncertain about how dispersed this distribution is. While the distribution’s central
tendency will be related to the mean type shares for countries, its variance will determine the
degree of heterogeneity across countries in their type shares.

To summarize, in population-level inference, we express uncertainty about the population’s
type shares with a Dirichlet prior, at the population level, on which we update. In the hierar-
chical setting, we are uncertain about the population-level type shares and the superpopulation
Dirichlet from which each node’s type shares are drawn. We express our uncertainty about each
superpopulation Dirichlet by positing a prior distribution over the Dirichlet’s 𝛼 parameters.

Now when we observe data on citizens within countries, we can update our beliefs about the
types for the particular citizens we observe, about type shares in the population of citizens
within each country that we study, and on the parameters of the Dirichlet distribution from
which population shares have been drawn. In updating on the last of these, we are learning
not just about the countries we observe but also about those we do not directly observe.

We illustrate with a simulation using a simple 𝑋 → 𝑌 model. We imagine that we are studying
the 𝑋 → 𝑌 effect in 10 countries. Each country has a parameter distribution drawn from a
common Dirichlet distribution.

We assign a particular true set of superpopulation parameter values that, for the analytic
exercise, are treated as unknown and that we would like to recover. In this true world, the
probability of assignment to 𝑋 = 1 is distributed Beta(6, 4), meaning that on average, 40% of
units are assigned to treatment, though there is variation in this proportion across countries
(or study sites). Nodal types on 𝑌 are distributed Dirichlet with parameter 𝛼𝑌 = (3, 4, 10, 3),
meaning that in the average country, the treatment effect is 0.3 (i.e. 10

20 − 4
20), though this

also varies across countries. Using these true parameter values, we simulate 𝑋, 𝑌 data for 50
observations for 𝑛 = 10 countries.

We now need to specify uncertainty over the (𝛼) parameters of the Dirichlet distribution at
the superpopulation level. In practice, we use an inverse gamma distribution for this, the
critical feature being that we presuppose positive numbers but otherwise keep priors on these
parameters dispersed. When we update now, we update simultaneously over the 𝛼 parameters
and the 𝜆 parameters for each country.
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Figure 11.6: Updating on study level parameters from integrated analyses. Error bars indicate
95 percent credibility intervals. Studies are ordered by the size of the estimates
from the unpooled analysis.
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In Figure 11.6 we plot the results. We focus on the average treatment effects and show a
comparison of three values for each country: the unpooled estimate, or the estimate we get for
each country using only data from that country; the pooled estimate, or the estimate we get
for each country using data from all countries to inform that country’s parameter estimate;
and the truth as posited for this simulation. As we can see, the pooled estimates are generally
closer to the center than the unpooled estimates: this is because we are effectively using data
from all countries to discount extreme features of the data observed in a given country. Put
differently, the pooled data serve somewhat like a prior when it comes to drawing inferences
about a single country: our inference is a compromise between the data from that country and
the beliefs we have formed from the pooled data. We can also see that, for most countries, the
pooling helps: The regularization provided by the pooling often (but not always) gives us an
estimate closer to the truth for most of the settings. This is especially true when the unpooled
estimates are unusually low. Across cases we have a reduction in root-mean-squared error of
65%.

Of course, we also get an estimate for the meta-estimand, the average effect in the superpop-
ulation. This lies close to the correct answer and has a relatively tight credibility interval.

Finally, we can extract estimates of the variation in treatment effects across cases—a quantity
distinct from our uncertainty about average effects. We can, for instance, think of a con-
centration parameter, operationalized as the sum of the 𝛼𝑗 terms for a node, with a higher
value representing lower overall heterogeneity. In this example, the “true” 𝛼𝑌 terms that we
assigned summed to 20. This “true” 𝛼𝑌 vector implies that treatment effects lie, 95% of the
time, between -0.06 and 0.61. Our estimate of this concentration parameter is 25.16. With
this particular data draw, we thus underestimate heterogeneity. . Though this concentration
parameter estimate still implies considerable heterogeneity in effects.1 Our posteriors imply
that we expect treatment effects to lie, with 95% probability, between -0.03 and 0.51.2

1There is of course also posterior variation around this estimate.
2Implied variation at the mean estimates of 𝛼.
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12 Clue Selection as a Decision Problem

Chapter summary

With this chapter, we begin to turn our attention to how causal models can inform
research design. In the present chapter, we draw out the implications of the causal
model approach for clue-selection strategies: for figuring out which pieces of evidence are
likely to be most informative about a question of interest. We demonstrate procedures
for assessing which clues minimize expected posterior variance and how to construct an
optimal decision tree for determining a dynamic clue-gathering strategy.

The causal models framework can be used not just for analysis but also for guiding research
design. This is the topic of the next three chapters. We start here by addressing the problem
of clue-selection: determining which qualitative data to gather on a case when conducting
process tracing..

Evidently, it makes sense to gather clues that have large probative value, but whether or not
a given clue will have probative value depends on the model we are working with and the
question we are asking. As we will also see, a clue’s informativeness can also depend on what
other clues have already been collected. Finding out that the butler had no motive may be
informative for the claim that he is innocent, but it will not be useful if we already know that
he had no opportunity.

We have already provided some insight into the problem in Chapter 7, where we showed how
relations of 𝑑−connection can tell us when a clue is possibly informative about a query. In
this chapter, we go further to show how we can use our causal model to figure out which
clues and clue-selection strategies are likely to be most informative about the query we seek
to address.

12.1 A Model-Informed Approach to Clue Selection

The representation of inference problems as one of querying a Bayesian model points to a
relatively simple method for selecting the most informative clues for collection. Consider, first,
a situation in which one can invest in collecting various forms of evidence on a case and wants
to know the expected gains from all possible collections of evidence that one could gather.

We can assess alternative strategies through the following procedure:
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1. Define the model.
2. Define a query on the model.
3. Define a data strategy: a set of clues for which one might search (e.g., observe the value

of 𝑌 ).
4. Given prior data, figure out the probability of different possible realizations of the new

data.
5. For each possible realization, calculate the posterior variance we would have if we ob-

served that realization.
6. Calculate the expected posterior variance for the data strategy by taking a weighted

average of the variances arising from the different data realizations, with weights given
by the probability of observing the data-realization in question.

7. Repeat steps 3-4 for different data strategies that we wish to compare.

If repeated for different sets of clues, this procedure then allows us to choose the clue strategy
with the lowest expected posterior variance.

A still more sophisticated approach would, for multiple clues, take sequence into account:
It would tell us which clues to search for later in the process given the realization of clues
sought earlier. The path-dependence of clue selection arises from the possibility that the
informativeness of a clue may depend on the value of other nodes in the model. A given clue
𝐾2, for instance, may be informative if another clue 𝐾1 has the value of 1 but not if it has the
value 0.

We provide tools for both of these approaches and illustrate them below for a simple model of
government survival as well as for our democratization model from Chapter 8.

12.1.1 Clue Selection with a Simple Example

Consider a model of government survival in office in which retaining office depends on not
being perceived as corrupt by the public. We show a DAG for this model in Figure 12.1. We
take two conditions as root nodes in this model. First, a country may or may not have a free
press (𝑋). Second, the country’s government may or may not be sensitive to public opinion
(𝑆).1 We set equal prior probabilities on the two values of 𝑋 and on the two values of 𝑆.
In terms of causal relations, we then allow that the government’s decision about whether to
engage in corruption (𝐶 = 1) may depend on whether the government is sensitive to public
opinion and whether there is a free press (that might reveal that corruption). Moreover, we
allow that whether the press will report on the corruption (𝑅 = 1) may depend on whether
there is government corruption and whether the press is free. Finally, whether the government
will be removed from office (𝑌 = 1) may depend on whether it has acted corruptly and whether
this gets reported in the press.

1Government sensitivity here can be thought of as government sophistication (Does it take the actions of others
into account when making decisions?) or as a matter of preferences (Does it have an overriding incentive to
engage in corruption?).

283



S :  Sensitive government

X :  Free Press

C :  Corruption

R :  Media report

Y :  Government replaced

Free Press and Government Survival

Figure 12.1: Causal model in which 𝑆 and 𝑋 are stochastic 𝐶 and 𝑅 have only two possible
nodal types each 𝑌 ∶ 1 if and only if 𝐶 and 𝑅 are both 1.

We work with a highly restricted version of this model to simplify the illustration. We will
call this version the base survival model and later also consider two variants that have the
same DAG but different nodal types permitted. At node 𝐶, we allow only two types: Either
corruption is always present (𝜃𝐶

1111) or corruption is always present except when there is both
a free press (𝑋 = 1) and sensitivity to public opinion (𝑆 = 1) (𝜃𝐶

1110). At 𝑅, we allow only
for 𝜃𝑅

0001 and 𝜃𝑅
0000: the possibility that there is reporting on corruption if and only if there

is corruption and a free press, and the possibility that there is never reporting on corruption.
For both 𝐶 and 𝑅, we put equal prior probabilities on all permitted nodal types. Finally, at
𝑌 , we restrict to just one nodal type, 𝜃𝑌

0001: The government will remain in office unless there
is both corruption (𝐶 = 1) and reporting on corruption (𝑅 = 1).

To summarize the intuition, governments will only fall if there is both corruption and reporting
on corruption. We are uncertain whether or not corruption is always present; but if corruption
is ever absent, it can only be because there exist both a free press and a government that cares
about public opinion. We are also uncertain whether or not media reporting on corruption is
always absent; but if it is ever present, it can only be because there is both corruption and a
free press. One implication is that governments that are sensitive to public opinion will never
fall because they will always eschew corruption when a free press—the only mechanism that
can generate reporting on corruption—is present. In turn, the presence of a free press can only
matter for government survival if governments are not sensitive and thus do not strategically
adjust their behavior in response to the risk of reporting.
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Suppose now that our query is whether 𝑋 has a positive effect on 𝑌 , and we want to know
which clues will be most helpful in answering this question. Using the model, we can ask how
likely different data realizations are under each possible clue strategy and what we would infer
about our query from each possible data realization, given existing data. We illustrate for a
situation in which we already know that 𝑌 = 0.

Table 12.1 shows results for each possible clue strategy. The 𝑆, 𝑋, 𝐶, 𝑅, 𝑌 columns of Ta-
ble 12.1 define the data realizations. The matrix includes all combinations of possible realized
values for all available clue strategies, given that we have already observed 𝑌 = 0. Note that
since we can already infer that 𝑅 = 0 from 𝑌 = 0, we omit strategies that seek data on 𝑅. A
“0” or “1” represents the observed value for a node that we have chosen to observe while “?”
indicates that a node is not observed under the given strategy. Thus, for instance, in the first
five rows, we are collecting data on all nodes. In the next three rows, we have sought data on
all nodes except 𝑆.

We also indicate the probability of each realization given the strategy, the inference we would
make from each data-realization—that is, the posterior probability that 𝑋 has a positive effect
on 𝑌 , given that 𝑌 = 0—and the posterior variance.

Since each inference, under each data-realization, also has an associated posterior variance,
or level of uncertainty, it is easy to assess the expected posterior variance from a given clue
strategy. We calculate the expected posterior variance from a given strategy as a weighted
average of the posterior variances associated with each possible data-realization under the
strategy, with weights given by the probability of each data-realization arising.

We then operationalize higher levels of expected learning from a strategy using the expected
reduction in posterior variance upon observing the data. We present the expected reduction
in posterior variance for each possible clue strategy, given the prior observation of 𝑌 , in the
upper panel of Figure 12.2 (ignore the lower panels for the moment). We can see a couple of
patterns here:

• By far, the biggest gains in expected learning come from observing 𝑋. We can see this
most readily by comparing the one-clue strategies to one another. But in general, any
strategy that includes observing 𝑋 always does substantially better than the comparable
strategy that excludes 𝑋. The intuition here is fairly straightforward: If we want to know
whether 𝑌 = 0 was caused by 𝑋 = 0, and start out very uncertain about 𝑋’s value, we
should expect to learn a good deal from figuring out whether 𝑋 is in fact equal to 0.

• There are also considerable gains from observing 𝑆 or 𝐶 by themselves. Consider, first,
why observing 𝑆 is informative. 𝑆 is potentially informative because it tells us something
about whether 𝑋 can affect 𝑌 by affecting 𝑅. Remember that a government is removed
only if there is both corruption (𝐶 = 1) and reporting on corruption (𝑅 = 1). Moreover,
there is only reporting on corruption (if ever) if 𝐶 = 1. Thus, for both of these reasons,
𝑋 can only have a positive effect on government removal (by causing reporting on cor-
ruption) if 𝐶 = 1: That is, if there is corruption. And 𝑆 (government sensitivity) tells
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Table 12.1: Inferences on whether 𝑋 has a positive effect on 𝑌 , given different data patterns
under different clue strategies.

strategy S X C R Y prob posterior variance
SXC 1 1 0 0 0 0.154 0.000 0.000

0 0 1 0 0 0.308 0.500 0.250
1 0 1 0 0 0.308 0.250 0.188
0 1 1 0 0 0.154 0.000 0.000
1 1 1 0 0 0.077 0.000 0.000

XC ? 1 0 0 0 0.154 0.000 0.000
? 0 1 0 0 0.615 0.375 0.234
? 1 1 0 0 0.231 0.000 0.000

SC 1 ? 0 0 0 0.154 0.000 0.000
0 ? 1 0 0 0.462 0.333 0.222
1 ? 1 0 0 0.385 0.200 0.160

SX 0 0 ? 0 0 0.308 0.500 0.250
1 0 ? 0 0 0.308 0.250 0.188
0 1 ? 0 0 0.154 0.000 0.000
1 1 ? 0 0 0.231 0.000 0.000

C ? ? 0 0 0 0.154 0.000 0.000
? ? 1 0 0 0.846 0.273 0.198

X ? 0 ? 0 0 0.615 0.375 0.234
? 1 ? 0 0 0.385 0.000 0.000

S 0 ? ? 0 0 0.462 0.333 0.222
1 ? ? 0 0 0.538 0.143 0.122

Prior ? ? ? 0 0 1.000 0.231 0.178
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Figure 12.2: Expected reduction in variance for different data strategies for the base survival
model and two variants of the model
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us something about what 𝐶’s value is likely to be if 𝑋 were set to 1, that is, if there is
a free press.

Specifically, if we observe 𝑆 = 0, then we know for sure that 𝐶 = 1, regardless of 𝑋, since 𝐶
is always 1 when 𝑆 = 0 under both permitted nodal types for 𝐶. If 𝑆 = 1, on the other hand,
there is a lower chance that 𝐶 would be equal to 1 if 𝑋 were set to 1: For one of 𝐶’s permitted
nodal types, there is always corruption; but for the other type, sensitive governments avoid
corruption when there is a free press, so 𝑋 moving to 1 would give us 𝐶 = 0. Recall that we
have put equal prior probabilities on these two nodal types. Thus, if we observe 𝑆 = 1, we
conclude that there is a lower probability that 𝐶 will take on the value necessary for 𝑋 to
exert a positive effect on 𝑌 than if we observe 𝑆 = 0.

Why, then, is 𝐶 informative? If we observe 𝐶 = 0, then we know that 𝑋 must be equal to 1
since, under permitted nodal types for 𝐶, there is an absence of corruption only in the presence
of a free press and sensitive governments. And if 𝑋 = 1 with 𝑌 = 0, a positive effect is ruled
out with certainty. If we observe 𝐶 = 1, then there remains some possibility that 𝑋 = 0 as
well as some possibility 𝐶 would remain at 1 if 𝑋 were set to 1 (depending on 𝐶’s unknown
nodal type), allowing 𝑋 to yield a positive effect on 𝑌 through 𝑅.

• There are no gains from observing 𝑅 if 𝑌 = 0. This result follows from our table of data
possibilities consistent with 𝑌 = 0 (Table 12.1). As we can see, there is no possibility of
observing anything other than 𝑅 = 0 if we have already seen 𝑌 = 0. We can see why
by thinking, jointly, about how 𝑌 is determined and how 𝑅 is determined. 𝑌 can be 0
either because 𝐶 = 0 or because 𝑅 = 0. So if 𝑅 were equal to 1, this must mean that 𝐶
was 0. However, a necessary condition for 𝑅 to be 1, under 𝑅’s permitted nodal types, is
𝐶 = 1 and 𝑋 = 1. In other words, the condition under which 𝑅 could be 1 is a condition
under which 𝑌 would not be 0. Thus, if we already know 𝑌 = 0, we know 𝑅 = 0, and
there is no gain from actually looking for 𝑅.

• Once we observe 𝑋, the next-most informative clue to add to our research design is 𝑆:
𝑋, 𝑆 has the greatest expected reduction in posterior variance of any of the two-clue
strategies. And, in fact, there are no gains to adding 𝐶 to 𝑋, relative to observing 𝑋 by
itself.

Let us develop the intuition underlying this result.

Imagine that we have already observed 𝑋’s value. If 𝑋 = 1, then (given 𝑌 = 0), a positive
effect is immediately ruled out with certainty, rendering any further observations of no value.
If we observe 𝑋 = 0, however, then (under this causal model) we know for certain that 𝐶 = 1,
simply because 𝐶 = 1 for both of 𝐶’s permitted nodal types when 𝑋 = 0 (there is always
corruption when there is no free press). Thus, there is nothing to be gained by observing 𝐶.
(We have already seen why there is nothing to be gained from observing 𝑅.)

Why are there possible gains to observing 𝑆 even if we’re going to observe 𝑋? 𝑆 is informative
because it tells us something about whether 𝑋 can affect 𝑌 by affecting 𝑅. The potential
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gains from observing 𝑆 with 𝑋 arise from the possibility that we may see 𝑋 = 0 (since 𝑋 = 1
would decide the matter by itself). If 𝑋 = 0, then we still need to know whether 𝑌 would be
1 if we changed 𝑋 to 1. As discussed above, that depends on whether 𝐶 would be 1 if 𝑋 were
set to 1, and (as, again, explained above) 𝑆 is informative on that matter.

• We also see—and it follows from the above logic—that we cannot improve on an 𝑋, 𝑆
strategy by gathering more data. Thus, if the search for information is costly, looking
only for 𝑋 and 𝑆 dominates all three- and four-clue strategies.

• Clues can be more informative jointly than separately, and the expected gains from ob-
serving one clue can depend on which other clues we plan to observe. To see this, observe
that, among the one-clue strategies, observing 𝐶 by itself is slightly more informative
than observing 𝑆 by itself. However, if we are planning to observe 𝑋, then the gains flip,
and it is only 𝑆 that offers additional useful information. As we have discussed, observ-
ing 𝑋 makes observing 𝐶 uninformative while 𝑆 remains informative as a moderator of
𝑋’s effect.

We would add that the pattern here forms part of a broader point that we wish to emphasize
in this chapter: While process tracing often focuses on examining steps along causal pathways,
it will often be the case that we learn more from moderators, like 𝑆 in this model, than from
mediators, like 𝐶 and 𝑅. We return to this point below.

12.1.2 Dependence on Prior Beliefs

Optimal clue strategies can depend on our prior beliefs about causal relationships among the
variables in the model. We illustrate this point here, examining how the evaluation of clue
strategies shift as we relax restrictions on nodal types and set informative priors over nodal
types.

Relaxing restrictions. In the analysis above, we allowed for just two (of 16 possible) nodal
types at both 𝐶 and 𝑅, effectively expressing strong beliefs about how 𝐶’s and 𝑅’s values are
determined. But what if we are less certain than this?

Suppose we are not sure that corruption can be prevented only through a combination of a
free press and government sensitivity. We think it possible that government sensitivity might
be sufficient: That 𝑆 might negatively affect 𝐶 regardless of 𝑋’s value. (Perhaps, for instance,
there are means other than via a free press through which the public might learn of government
corruption.) We allow for this causal possibility by expanding the set of kept nodal types for
𝐶 to include 𝜃𝐶

1010 in defining the model.

The evaluation of strategies under this adjusted set of beliefs, for the same query (whether 𝑋
has a positive effect on 𝑌 ) and prior data (𝑌 = 0) as before, is displayed in the middle panel
of Figure 12.2.
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We see that, among one-clue strategies, observing 𝑋 is still the best choice. The best two-clue
strategy is also still 𝑋, 𝑆. Where things change most significantly, however, is among three-
clue strategies: now, we can do even better by additionally observing 𝐶. The reason is that,
with greater uncertainty about its nodal types, 𝐶’s value is no longer known when 𝑋 = 0: It
is now possible that 𝐶 = 0 when 𝑋 = 0 since we think it possible that 𝐶’s nodal type is 𝜃𝐶

1010.
Since 𝐶’s value bears on whether 𝑋 can have an effect via 𝑅, we can thus, in this situation,
potentially learn something by observing 𝐶, even if we have already seen 𝑋 and 𝑆.

We can also see 𝐶’s enhanced informational value in other places. Among one-clue strategies,
observing 𝐶 alone generates greater learning here than it does under the base model. More
strikingly, among two-clue strategies, we see that observing 𝐶 can now generate learning even
if we have already observed 𝑋 (whereas there was no gain from strategy 𝑋, 𝐶 relative to 𝑋
under the base model). While 𝑋, 𝑆 is still a better strategy than 𝑋, 𝐶, the change in diagnosis
could matter if, for instance, we cannot observe 𝑆 for some reason or if observing 𝑆 is much
more costly than observing 𝐶.

Moreover, the expected variance reduction from observing 𝑆 is also greater under the new
model, for most one- and two-clue strategies. For the informal intuition here, note that 𝑆
is potentially informative about 𝐶’s value as a parent of 𝐶. And we now believe (with the
added nodal type for 𝐶) that there may be an additional way in which 𝑆 could matter for 𝐶,
and thus provide information about its value. Moreover, since the added nodal type has 𝑆
exerting a negative effect on 𝐶 regardless of 𝑋’s value, 𝑆 can now be informative even if we
have already observed 𝑋 = 0.

Finally, we can see that nothing has changed in regard to 𝑅, about whose nodal types we have
retained the same beliefs. It is still uniformly unprofitable to observe 𝑅 because we still know
𝑅’s value whenever 𝑋 = 0.

This exercise also suggests a further interesting principle of clue-selection: that potential
informativeness rests on uncertainty about what we will find.

Changing probabilities. We can also see what happens when, rather than permitting
new nodal types, we have more informative beliefs about the prevalence of permitted types.
Suppose we believe most governments to be sensitive to public opinion. This would imply that
we should put greater weight on 𝜃𝑆

1 than on 𝜃𝑆
0 .

The third panel of Figure 12.2 shows the evaluation of strategies for a model in which we put a
90% prior probability on 𝑆 = 1. A number of features stand out. First is the lower reduction
in variance from most strategies under the new model: Having a more extreme belief about
𝑆’s value gives us stronger prior beliefs about whether 𝑋 could have caused 𝑌 since such an
effect depends on 𝑆’s value. A second striking difference is that searching for 𝑆 is expected
to be much less informative in this model. The reason is simple: We now have a strong prior
belief about what we are likely to find when we search for 𝑆. We could be surprised, but we
should not expect to be. In the original model, in contrast, we were maximally uncertain about
𝑆’s value—believing it had a 0.5 chance of being 1—and so there was much more to be gained

290



by looking. Finally, we see that a search for 𝐶 becomes more fruitful than before; the reason
is that with 𝑆 = 1 likely, 𝐶 is now more sensitive to (and informative about) 𝑋’s value.

The highest level lesson from this discussion is that even for a very simple model, assessing
which clues are most information ‚Äì in combination with which other clues ‚Äì is relatively
complex. It becomes more complex as models become more complex. Even still, there is a
relatively simple procedure that can be applied to answer the question that can be used once
a causal model has been fully specified.

12.1.3 Clue Selection for the Democratization Model

We now apply this approach to the model of democratization that we worked with in Chapters
Chapter 8 and Chapter 10.

We start by specifying the democratization model, with negative effects ruled out for 𝐼 → 𝑀 ,
𝑀 → 𝐷, and 𝑃 → 𝐷 and a positive direct effect ruled out for 𝐼 → 𝐷. ). We set flat priors
over all remaining nodal types. We will call this our “base” model. We then examine how
optimal clue selection strategies change as we modify the query and the data.

12.1.3.1 Base Model

Let’s assume that we have already observed both levels of inequality and the outcome of de-
mocratization in a case, and we want to know whether inequality caused, or would cause,
democratization in that case. The decision we confront is what combination of the other
nodes—mobilization or international pressure—we should select to collect data on: The avail-
able strategies are to observe nothing further; to observe 𝑃 only; to observe 𝑀 only; or to
observe both 𝑃 and 𝑀 . We can imagine that there are different cost implications of these
different strategies.

We illustrate the consequences of these options for our query in two ways. First, in Figure 12.3,
we show the possible inferences we could draw from different clue strategies. This figure
displays all data realizations that might result from all possible clue-selection strategies, the
inference we would draw about our query from each realization of the data, and the probability
of each realization occurring under each strategy. In each column of the figure, we show these
quantities for a different combination of 𝐼, 𝐷 values observed in a case prior to clue-selection.
Within each graph in the figure, the size of the plotted point corresponding to each data-
realization is scaled to the probability of that data-realization occurring given the model and
the case’s 𝐼 and 𝐷 values. These data probabilities constitute key information for evaluating a
clue strategy: A given strategy might allow for a potential data realization that would shift our
inferences by a large amount if observed, but that data-realization might be highly unlikely
to occur.
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In reading Figure 12.3, we want to examine how much inferences shift to the left or right
relative to our “prior” belief shown in the top row of graphs—that is, what we infer from only
have observed 𝐼 and 𝐷. In an 𝐼 = 0, 𝐷 = 0 case, for instance, we can see that if we search only
for 𝑃 , our inference about the probability that 𝐼 mattered for 𝐷 will shift down slightly if we
observe 𝑃 = 0 but will shift up substantially if we observe 𝑃 = 1. If we look for 𝑀 only, we
see that the more impactful potential observation (𝑀 = 1) is much less likely to be observed,
given our model and 𝐼 = 0, 𝐷 = 0, than the less impactful observation (𝑀 = 0). This will
necessarily limit how fruitful we expect a strategy of searching for 𝑀 alone to be.

In Figure 12.4, we average across the possible ways that each clue-selection strategy might
turn out to calculate the reduction in uncertainty (i.e., in variance) that we expect to achieve
under each strategy. We can think of expected uncertainty reduction, our measure of expected
learning, as a summary assessment of a strategy’s value. Again, we plot this uncertainty-
reduction separately by column for each 𝐼, 𝐷 combination. Thus, strategies that shift us
further to the right, toward a larger reduction in uncertainty, are those from which we expect
to learn the most.

I=0, D=0 I=0, D=1 I=1, D=0 I=1, D=1

P
rior 

 (no clue data)
P

 only
M

 only
M

 &
 P

0.00 0.05 0.10 0.15 0.20 0.21 0.22 0.23 0.24 0.25 0.20 0.21 0.22 0.23 0.24 0.250.00 0.05 0.10 0.15

P= ? M= ?

P= 0 M= ?

P= 1 M= ?

P= ? M= 0

P= ? M= 1

P= 0 M= 0

P= 0 M= 1

P= 1 M= 0

P= 1 M= 1

Probability I affects D

C
lu

es

data probability

0.25

0.50

0.75

1.00

Figure 12.3: Base democratization model: What we expect to find and what we expect to
learn from different clue strategies. Size of each dot indicates the probability of
observing the data pattern given the search strategy.

One clear message emerging from Figure 12.4 is that, if we have to choose one of the two clues to
go looking for, then we should choose 𝑃 . Given our model (including restrictions of and priors
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Figure 12.4: Reduction in expected variance from different data strategies for different kinds
of cases (base democratization model).

on the types), we expect to reduce our uncertainty more by learning about an alternative cause
of democratization (international pressure) than by learning about a mediator (mobilization),
regardless of the 𝐼 and 𝐷 values in the case.

We also see differences depending on the case’s 𝐼 and 𝐷 values. In particular, we see that the
mediator, 𝑀 , is much more informative for 𝐼 = 𝐷 cases (first and fourth columns). This is
because, given the restrictions on nodal types in our model, these are cases in which the causal
effect we are looking for is one that could have operated via the mediator—that is, because
any 𝐼 → 𝐷 effect in such cases has to be positive. In contrast, 𝑀 is informative only as a
moderator of the cause’s direct effects when the 𝐼 → 𝐷 effect can only be negative (second
and third columns, where 𝐼 ≠ 𝐷). This finding illustrates an important, more general point:
The process tracing evidence that will be most informative to go looking for can depend on
what it is we have already observed.

12.1.3.2 Revised Model, Revised Query

We can also see how the comparison across clue strategies changes if we revise the model or
change the query. To illustrate, let’s first revise the query: imagine that we are interested in
understanding whether inequality plausibly mattered for democratization via mobilization.

The model revision that we contemplate removes a restriction, allowing the possibility of a
negative effect of inequality on mobilization. We now set the probability of a negative 𝐼 → 𝑀
effect at 0.1 instead of 0. Our new, pathway-related query is defined as follows: If we could
keep 𝐼 constant but vary 𝑀 over the values that it would take as 𝐼 changes from 0 to 1, would
𝐷 then change, (given the observed values of 𝐼 and 𝐷)?2

2Formally this query is 𝐷(𝐼 = 0, 𝑀 = 𝑀(𝐼 = 1)) ≠ 𝐷(𝐼 = 0, 𝑀 = 𝑀(𝐼 = 0))|𝐼 = 𝑖, 𝐷 − 𝑑. Erratum:
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Figure 12.5: Revised query and/or model: Expected reduction in posterior variance from dif-
ferent data strategies for cases with different I and D values

Figure 12.5 shows how our uncertainty would change, in expectation, under different clue
selection strategies, comparing a scenario in which we alter the query only, without changing
the model, to a scenario in which we alter both the query and the model.

Looking first at the scenario in which we change the query only, we always learn from observing
𝑀 or 𝑃 in an 𝐼 = 0, 𝐷 = 0 or an 𝐼 = 1, 𝐷 = 1 case. However, the relative values on 𝑀 and
𝑃 are reversed from what they were for our first query. Whereas 𝑃 was more informative
for assessing whether 𝐼 had a positive effect on 𝐷, observing 𝑀 ’s value is more important,
in expectation, for learning whether 𝐼 had a positive effect on 𝐷 through the 𝑀 -mediated
pathway. For the cases where 𝐼 = 0, 𝐷 = 1 or 𝐼 = 1, 𝐷 = 0, on the other hand, we learn
nothing because we already know (or have assumed in the model) that negative effects cannot
operate through 𝑀 .

However, if we change the model, 𝑀 becomes still more important for the pathway query. As
we can see, we now expect to learn from 𝑀 both in 𝐼 ≠ 𝐷, and in 𝐼 = 𝐷 cases—the patterns
of learning are very similar, though note that the degree of learning is still lower for the 𝐼 ≠ 𝐷
cases. Consider an 𝐼 = 0, 𝐷 = 1 case. When negative 𝐼 → 𝑀 effects were excluded, 𝐼 could
not have a negative effect on 𝐷 through 𝑀 . 𝑀 was informative about this type of case only as
a moderator of 𝐼 ’s direct negative effect on 𝐷, but there was nothing to learn about mediated
effects. An observation of 𝑀 = 1 counted as evidence against 𝐼 = 0 being the cause of 𝐷 = 1
only because 𝑀 = 1 could be the cause (given that 𝑀 could have a positive effect on 𝐷);
but again, there was no question of effects going through 𝑀 . Once we relax the monotonicity
restriction and allow negative effects of 𝐼 on 𝑀 , 𝑀 is additionally informative as a potential
mediator of a negative 𝐼 → 𝐷 effect and thus informative for our new query.

correction to expression, 20250601.
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12.2 Dynamic Strategies

The clue-collection strategies described above assume that researchers select the full set of
clues to be gathered in advance and do not alter their strategies as they go along. However,
the expected informativeness of a given clue may depend on the values of other clues that we
could observe first. Thus, if we have the flexibility to adjust clue-selection procedures as we
observe data, then we can select an optimal strategy in a dynamic sense, taking into account
earlier observations when selecting later ones.

Given 𝑛 nodes, a dynamic data collection strategy will be of the form:

𝜎 = {𝐾1, (𝐾2 ∣ 𝐾1 = 1), (𝐾2 ∣ 𝐾1 = 0), (𝐾3 ∣ 𝐾1 = 1, 𝐾2 = 0), … }

where each 𝐾𝑗 is an element of the nodes on the graph or is the empty set. Thus, we start with
observing 𝐾1; then, whether we choose to observe 𝐾2 depends on the value of 𝐾1; whether
we choose to observe 𝐾3 depends on the value of 𝐾1 and (if we observed it) 𝐾2; and so on.
A strategy vector specifies a series of conditional clue-search actions: It identifies the first
clue sought and then which clues are sought conditional on the realization of all prior clues
sought.

Each possible strategy has an associated expected reduction in variance. We can also build in
an expected cost associated with each clue, allowing us to treat clue-selection as a problem of
optimizing over informativeness and cost.

Let’s illustrate with the government survival example from before, using the base model (in
which we allow for only two nodal types at 𝐶 and at 𝑅 and only one nodal type at 𝑌 ). Imagine
a situation in which we know that 𝑌 = 0 and are interested in whether 𝑌 = 0 because of 𝑆 (the
value of which we have not observed). We consider strategies in which we first seek information
on one node and then, conditional on what we find, look or do not look for data on one other
node. With five nodes, one already known, there are 4 × 42 strategies of this form (that is 4
first-clue choices, and then 16 possible pairs of responses to whatever value is found on the
first clue).

To consider the simplest subset of these, consider the strategies that involve looking first at
𝑆. If we learn here that the government was not sophisticated, then this answers the query in
the negative: The government could not have remained in power because it was sophisticated.
If we learn that the government was sophisticated, then it might have been the cause, but we
do not yet know that with certainty. Our next move might be to examine whether there was
a free press (𝑋): Learning that there was or was not a free press will settle the matter since
sophistication will have caused the government’s survival if and only if there is a free press.

We represent each of these three two-step strategies (three of many possible ones) in Table 12.2,
along with the expected variance reduction associated with each. In addition, we indicate each
strategy’s expected cost. Here, we assume, for simplicity, that each clue has a cost of 1. We

295



priors

(S),(.,.)

(S),(.,X)(S),(.,C)

(X),(.,.)

0

1

2

3

4

0.04 0.05 0.06 0.07
Expected variance

E
xp

ec
te

d 
co

st
s

Variance / cost tradeoffs
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can see that we expect to learn the same amount from Strategies 2 and 3, but that Strategy
3 comes at a lower expected cost because we have a 50% chance of only having to collect one
observation, depending on what we observe.

Table 12.2: Illustration of three (of many) possible two-step strategies.

Strategy Step 1 Step 2 if 0 Step 2 if 1 Expected variance Expected Cost
1 S None None 0.167 1
2 S X X 0 2
3 S None X 0 1.5

We can, of course, also calculate the expected costs of different strategies while allowing differ-
ent clues to come at different costs. Figure 12.6 plots all dynamic strategies involving up to
two clues, assuming 𝑌 = 0 has already been observed, showing expected variance-reduction for
the query, “Did S cause Y?” and expected cost. For this exercise, we set differential clue prices
such that X is the most costly clue to collect, followed by C, then S, then Y, then R. We have
labeled the strategies that lie along the frontier of optimal strategies. The optimal choice then
depends on how we want to trade off cost against learning. Among the notable points along
this frontier, we see that the cheapest strategy among those that minimize variance involves
gathering S and then gathering C if and only if we observe S=1. We can also see that the
lowest-variance strategy that minimizes costs involves gathering S only and then stopping.

We also implement this exercise for the basic inequality and democratization model. We
illustrate (Figure 12.7) for a situation in which we know there is high inequality and democ-
ratization has occurred, and we want to know if high inequality caused the democratization.
We will assume here that mobilization is easy to observe (low-cost), but pressure is difficult
(high-cost).

We can see here that four strategies are non-dominated by any alternative. These are, in order
of increasing cost:

1. Observe 𝑀 first, then stop. This strategy has relatively high expected uncertainty but
minimizes costs relative to any other strategy: We observe just one clue, and it’s the
cheaper one.

2. Observe 𝑃 first, then stop. We’ll learn more from this strategy than from Strategy
1, though at a higher cost. Still, no other strategy allows us to reduce costs without
increasing variance.

3. Observe 𝑃 first; if 𝑃 = 0, observe 𝑀 ; otherwise stop. We, again, get uncertainty
reduction here, relative to Strategy 2, but again at a higher cost.

4. Observe 𝑀 first; if 𝑀 = 0, stop; if 𝑀 = 1, observe 𝑃 . This strategy gets us the lowest
expected posterior variance of any strategy. Moreover, it is not the highest-cost strategy,
which would be to observe both clues no matter what. Once we’ve observed 𝑀 = 0, we
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Figure 12.7: Cost-variance tradeoffs for all dynamic strategies involving up to two clues under
the base democratization model

get nothing from the additional investment in 𝑃 since 𝑀 = 0 already tells us that 𝐼
could not have had a positive effect on 𝐷.

Note also that both Strategies 3 and 4 are conditional two-clue strategies: They involve first
seeking one clue and seeking a second clue only under one of the possible realizations of the
first clue. But they have different outcomes. Perhaps most interestingly, we don’t expect to
learn the most by starting with the most probative clue. If we start with the more informative
clue, 𝑃 , observing 𝑀 only if 𝑃 = 0, we expect to end up with more uncertainty than if we
start with the less informative clue, 𝑀 , and observe 𝑃 only if 𝑀 = 1.

12.3 Conclusion

In this chapter, we have sought to show how clue-selection strategies for process-tracing can
be guided by a causal model. An explicit statement of a causal model—including prior beliefs
over roots—allows one to assess what will be inferred given all possible observations over all
nodes on a graph. This opens the way for simple strategies for assessing which case-level data
are most valuable for what query, and in what order these should be gathered. A key takeaway
from this chapter’s analysis is that there is no one-size-fits-all approach to deciding where in
a case to look for probative value. The most useful clue will not always be a step along a
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causal chain or in any other particular location. Which clue strategy we should expect to be
most informative will depend on features of the research situation: on the prior beliefs we have
embedded in our model, on the question we are asking, and on what data we have already
observed. The procedures outlined in this chapter give the researcher a systematic, transparent
way of reasoning from a model, a query, and a set of prior observations to a choice among
the available clue strategies. Strategies may be fixed in advance or dynamic, and information
about the costliness of clues can readily be incorporated into the analysis.

The procedures that we describe in this chapter may not always be practicable. Researchers
may find it difficult to describe a model in advance and place prior beliefs on nodal types.
Moreover, the collection of new data could easily give rise to possibilities and logics that were
not previously contemplated. Nothing here seeks to deny these potential challenges. Our claim
here is a modest one: Insofar as one can specify a model before engaging in data gathering,
the model provides a powerful tool to assess what data it will be most useful to gather.
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13 Case Selection

Chapter summary

We show how to use causal models to inform the selection of cases for intensive analysis.
We outline a procedure in which we predict the inferences that will be made when future
data are found and use these predictions to inform case-selection strategies. We ask:
Given a set of cases on which we already have data on 𝑋 and 𝑌 , which of these cases will
it be most advantageous to choose for more in-depth investigation? We show that the
optimal case-selection strategy depends jointly on the model we start with and the causal
question we seek to answer, and we draw out the implication that researchers should be
wary of generic case-selection principles.

Very often, researchers start out with access to 𝑋, 𝑌 data on many cases and then want to
select a subset of cases—case studies—to examine more carefully in order to draw stronger
conclusions either about general processes or about likely effects in specific cases. A key design
decision is to determine which cases are most likely to be informative about the question at
hand. This chapter shows how we can use a causal-model-based approach to inform this key
research-design decision.

13.1 Common Case-Selection Strategies

A host of different strategies have been proposed for selecting cases for in-depth study based
on the observed values of 𝑋 and 𝑌 data. Perhaps the most common strategy is to select
cases in which 𝑋 = 1 and 𝑌 = 1 and look to see whether in fact 𝑋 caused 𝑌 in the chosen
cases, using some approach to inferring causality from within-case evidence. But many other
selection strategies have been proposed, including strategies to select cases “on the regression
line” or, for some purposes, cases “off the regression line” (e.g., Evan S. Lieberman (2005)).
Some scholars suggest ensuring variation in 𝑋 (most prominently, King, Keohane, and Verba
(1994)), while others have proposed various kinds of matching principles. Still, others have
pointed to the advantages of a random sampling of cases, either stratified or unstratified by
values on 𝑋 or 𝑌 (Fearon and Laitin (2008), Herron and Quinn (2016)).

One reason why case-selection strategies might differ is that we might be using the case studies
in quite different ways.
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A matching strategy, for instance—selecting cases that are comparable on many features but
that differ on 𝑋—can replicate on a small scale the kind of inference done by matching es-
timators with large-𝑛 data. Such a strategy can draw leverage from 𝑋, 𝑌 variation even if
researchers have matched on other within-case characteristics.

Other strategies seek to use qualitative information to check assumptions made in cross-case
𝑋, 𝑌 analysis: For example, is the measurement of 𝑋 and 𝑌 reliable in critical cases?

For addressing such questions, given limited resources, it might make sense to focus on cases
for which validation plausibly makes a difference to the 𝑋, 𝑌 inferences: For example, we
might focus on influential cases that have unusually extreme values on 𝑋 and 𝑌 . Similar
arguments are made for checking assumptions on selection processes, though we consider this
a more complex desideratum since this requires making case-level causal inferences and not
simply measurement claims (Dunning 2012). Seawright (2016) advocates for selecting extreme
and deviant cases for purposes such as the discovery of measurement error or omitted variables
that might have consequences for inferences drawn from cross-case 𝑋, 𝑌 correlations.

A third purpose is to use a case to generate alternative or richer theories of causal processes,
as in Lieberman’s “model-building” mode of “nested analysis” (Evan S. Lieberman (2005)).
Lieberman suggests that cases “off the regression” line will typically be of greatest interest for
this purpose. Weller and Barnes (2014) also focus on both 𝑋, 𝑌 relations and whether the
cases are useful for hypothesis generation.

In what follows, we focus on a simpler and more general way of thinking about the purpose
of gathering more detailed evidence on a subset of cases: The richer evidence gathered in our
chosen cases will feed directly into model-updating and, in turn, help answer our query. We
can thus frame the case-selection task as follows: Given existing 𝑋, 𝑌 data for a set of cases
and a given clue (or set of clues) that we can go looking for in a more intensive analysis (i.e.,
process tracing) of some subset of these cases, we want to figure out which cases to select for
intensive analysis so that we maximize expected learning about some well specified question
of interest.

The basic insight of this chapter is simple enough: The optimal strategy for case selection
for a model-based analysis is a function of the model we start with and the query we seek to
address, just as we saw for the optimal clue-selection strategy in Chapter 12. This insight
yields guidance that is consistent with some common advice but at odds with other advice.
But the most general message of this chapter is about the overall approach: That is, have
clear goals—know what question you are asking and whether you are posing it at the case
level, the population level, or both—think through in advance what you might find in cases
you could select for inquiry, think through how what you might find addresses your goals, and
then choose accordingly. More specifically, we show how researchers can use a causal model
to formalize this analysis: To tell them what types of cases are likely to yield the greatest
learning given their model and the query that they seek to answer.

The broad injunction to select cases to maximize learning is in line with the general recommen-
dations of Fairfield and Charman (forthcoming), though the strategy for maximizing learning
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differs here, particularly in its grounding in a causal model. Most closely related to our anal-
ysis in this chapter is the contribution of Herron and Quinn (2016), who build on Seawright
and Gerring (2008). While Seawright and Gerring provide a taxonomy of approaches to case
selection, they do not provide a general strategy for assessing the relative merits of these dif-
ferent approaches. As we do, Herron and Quinn (2016) focus on a situation with binary 𝑋, 𝑌
data and assess the gains from learning about causal type in a set of cases. Interestingly, in
their treatment, the causal type, 𝑍𝑖 is called a confounder rather than being an estimand of
direct interest; in our setup, confounding as normally understood arises because of different
probabilities of different causal types of being assigned to “treatment,” or an 𝑋 = 1 value).

Our setup differs from that in Herron and Quinn (2016) in a few ways. Herron and Quinn
(2016) parameterize differently, though this difference is not important.1 Perhaps the most
important difference between our analysis and that in Herron and Quinn (2016) is that we
connect the inference strategy to process-tracing approaches. Whereas Herron and Quinn
(2016) assume that causal types can be read directly, we assume that these are inferred imper-
fectly from evidence and we endogenize the informativeness of the evidence to features of the
inquiries.^[There are differences in addition to these. Here, we assume that the case-selection
decision is made after observing the 𝑋𝑌 distribution and we explore a range of different
possible contingency tables. In Herron and Quinn (2016), the distribution from which the
contingency tables are drawn is fixed, though set to exhibit an expected observed difference
in means (though not necessarily a true treatment effect) of 0.2. They assume large 𝑋, 𝑌
datasets (with 10,000 units) and case-selection strategies ranging from 1 to 20 cases. Another
important difference, is that in many of their analyses, Herron and Quinn (2016) take the
perspective of an outside analyst who knows the true treatment effect; they then assess the
expected bias generated by a research strategy over the possible data realizations. We, instead,
take the perspective of a researcher who has beliefs about the true treatment effect that corre-
spond to their priors, and for whom there is, therefore, no expected bias. Despite these various
differences, our results will agree in key ways with those in Herron and Quinn (2016).

13.2 No General Rules

Case selection is about choosing in which cases we will seek further information. We want
to look for evidence in cases where that evidence is likely to be most informative. And the
informativeness of a case depends, in turn, on our model and our query.

We start in this section by illustrating how simple rules—like choosing cases where 𝑋 = 1
and 𝑌 = 1 or choosing the cases we most care about—may sometimes lead us astray. Rather,

1Herron and Quinn (2016) have a parameter 𝜃 that governs the distribution of data over 𝑋 and 𝑌 and then,
conditional on 𝑋, 𝑌 values, a set of parameters 𝜓𝑥𝑦 that describe the probability of a case’s being of a
given causal type. We take both 𝜃 and 𝜓𝑥𝑦 to derive from the fundamental distribution of causal types and
assignment probabilities. The difference in parameterization does have implications for interpretations of
the priors. For example, flat priors over 𝜃 and 𝜓 imply a tighter distribution than a uniform prior over the
causal types. In fact, Herron and Quinn (2016) use priors with greater variance than uniform.
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we will argue that there is a general procedure for determining how to select cases, and this
procedure requires a specification of the learning we expect to achieve, given different data
patterns we might find.

13.2.1 Any Cell Might Do

Although it might be tempting to seek general case-selection rules of the form “examine cases
in which 𝑋 = 1 and 𝑌 = 1” or “ignore cases in which 𝑋 = 0 and 𝑌 = 1,” it is easily
demonstrated that which cases will be (in expectation) more informative depends on models
and queries.

Suppose that we know that processes in some population can be represented by the model
𝑋 → 𝑌 ← 𝐾, and, moreover:

• Pr(𝑌 = 1|𝑋 = 0, 𝐾 = 0) = 1
• Pr(𝑌 = 1|𝑋 = 1, 𝐾 = 0) = .5
• Pr(𝑌 = 1|𝑋 = 0, 𝐾 = 1) = 0
• Pr(𝑌 = 1|𝑋 = 1, 𝐾 = 1) = .9

One way to read this set of statements is that 𝑋’s causal effect on 𝑌 varies with 𝐾. Say we
know that in the population, the share of 𝑋 = 1 cases, 𝜆𝑋

1 is 0.5. But we do not know how
common 𝐾 is. Nor do we know the joint distribution of 𝑋 and 𝑌 . Thus, we do not know either
the average effect of 𝑋 or the probability that 𝑋 caused 𝑌 either in the population or for a case
with particular 𝑋, 𝑌 values. We will let 𝜅 denote the unkown quantity Pr(𝐾 = 1) = 𝜆𝐾

1 .

What do the above statements tell us about 𝐾’s informativeness? The beliefs above imply
that if we were given a case with 𝑋 = 𝑌 = 1, then 𝐾 is a “doubly decisive” clue for assessing
whether, in this case, 𝑋 causes 𝑌 . In particular, we see that for an 𝑋 = 𝑌 = 1 case, observing
𝐾 = 1 implies that 𝑋 caused 𝑌 : This is because, if 𝑋 were 0 𝑌 would have been 0. We also
see that 𝐾 = 0 in an 𝑋 = 1, 𝑌 = 1 case implies that 𝑋 did not cause 𝑌 since 𝑌 would have
still been 1 even if 𝑋 were 0. So an 𝑋 = 𝑌 = 1 case would be a highly informative place to
go looking for 𝐾.

However, if we had a case in which 𝑋 = 𝑌 = 0, then learning 𝐾 would be entirely uninformative
for the case. In particular, we already know that 𝐾 = 1 in this case as the statements above
exclude the possibility of a case in which 𝑋 = 𝑌 = 0 and 𝐾 = 0. So there would be nothing
gained by “looking” to see what 𝐾’s value is in the case.

For the same reason, we can learn nothing from 𝐾 in an 𝑋 = 0, 𝑌 = 1 case since we know
that 𝐾 = 0 in such a case.

On the other hand, if we chose an 𝑋 = 1, 𝑌 = 0 case, then 𝐾 would again be doubly decisive,
with 𝐾 = 0 implying that 𝑋 = 1 caused 𝑌 = 0 (because the counterfactual of 𝑋 = 0 would
have resulted in 𝑌 = 1 when 𝐾 is 0), and 𝐾 = 1 implying that 𝑋 = 1 did not cause 𝑌 = 0
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(because the counterfactual of 𝑋 = 0 would still result in 𝑌 = 0 since there is zero likelihood
that 𝑌 = 1 when 𝑋 is 0 and 𝐾 is 1).

We have chosen extreme values for this illustration—our beliefs could, of course, allow for
gradations of informativeness, rather than all-or-nothing identification—but the larger point
is that beliefs about the way the world works can have a powerful effect on the kind of case
from which learning is possible. And note that in this example, there is nothing special about
where a case lies relative to a (notional) regression line: Informativeness in this setup happens
to depend on 𝑋’s value entirely. Though again, this is a particular feature of this particular
set of beliefs about the world.

There are two further considerations we might take into account when deciding whether to
choose an 𝑋 = 1, 𝑌 = 0 case or an 𝑋 = 1, 𝑌 = 1 case. In both cases, the clue will be doubly
decisive, so we will learn about the case. However, the cases may still differ with respect to:

• How great our prior uncertainty is about the case?
• What we can learn from the case for the population?

Case-Level Prior Uncertainty

Prior uncertainty rin our example reduces to the prior that 𝐾 = 1 in the case. We have:

Pr(𝐾 = 1|𝑋 = 𝑌 = 1) = Pr(𝐾 = 1, 𝑋 = 1, 𝑌 = 1)
Pr(𝑋 = 1, 𝑌 = 1)

Making use of the fact that 𝑃𝑟(𝑋 = 𝑥, 𝐾 = 1) = 0.5𝜅 and 𝑃𝑟(𝑋 = 𝑥, 𝐾 = 0) = 0.5(1 − 𝜅)
this can be written:

Pr(𝐾 = 1|𝑋 = 𝑌 = 1) = Pr(𝑌 = 1|𝐾 = 1, 𝑋 = 1)𝜅
Pr(𝑌 = 1|𝐾 = 1, 𝑋 = 1)𝜅 + Pr(𝑌 = 1|𝐾 = 0, 𝑋 = 1)(1 − 𝜅) (13.1)

From what we know about the population, we then have:

Pr(𝐾 = 1|𝑋 = 𝑌 = 1) = 0.9𝜅
0.9𝜅 + 0.5(1 − 𝜅)

So if we had a case prior that 𝜅 = .5 (and so each 𝐾, 𝑋 combination is equally likely) we
would have Pr(𝐾 = 1|𝑋 = 1, 𝑌 = 1) = 0.9

0.9+0.5 = 0.64.

For an 𝑋 = 1, 𝑌 = 0 case, the same calculation would yield Pr(𝐾 = 1|𝑋 = 1, 𝑌 = 0) =
0.1

0.5+0.1 = 0.17.

In other words, with these priors, we are more uncertain about the value of 𝐾 in the 𝑋 =
1, 𝑌 = 1 case than in the 𝑋 = 1, 𝑌 = 0 case and expect to learn more from the first kind of
case than from the second.
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Population inference

Suppose, now, that we were interested in a population query: the average effect of 𝑋 on 𝑌 . We
can see that this is equal to 𝜅× 0.9 +(1 − 𝜅)× (−0.5)) = 1.4× Pr(𝐾 = 1) −0.5. For this query,
we need only determine the prevalence of 𝐾 = 1 in the population. It might seem that this
means that it is irrelevant what type of case we choose: why not use pure random sampling
to determine 𝐾’s prevalence? As we saw above, however, we have more information about
the likely value of 𝐾 in some kinds of cases than in others. Thus, for this population-level
estimand as well, selecting an 𝑋 = 1 case will be informative, while selecting an 𝑋 = 0 case
will not be informative.

We also expect different inferences in the two kinds of cases for the population share of 𝐾 = 1
cases, 𝜆𝐾

1 .
For illustration, say we entertain two equally likely possibilities about 𝜆𝐾

1 : either 𝜆𝐾
1 = 𝜅𝐻 =

2/3 or 𝜆𝐾
1 = 𝜅𝐿 = 1/3. We can request a case with any 𝑋, 𝑌 combination to inspect and then

draw an inference about 𝜆𝐾
1 . Note that since we request a case with particular 𝑋, 𝑌 features

we do not learn from the values of 𝑋 and 𝑌 in the case we examine (except perhaps if we were
told that no such case existed). We have, after all, requested a case like this to look at.

Table 13.1 shows the implied probabilities put on different data patterns for the different
values of 𝜆𝐾

1 we entertain. For instance, looking at the last row if 𝜆𝐾
1 = 0.67 we expect

𝑋 = 1, 𝐾 = 1 with probability 0.5 × 0.67 and expect 𝑌 = 1 with probability 0.9, given
𝑋 = 1, 𝐾 = 1, meaning Pr(𝑋 = 1, 𝐾 = 1, 𝑌 = 1|𝜆𝐾

1 = 0.67) = 0.5 × 0.67 × 0.9 ≈ 0.30.
Quantity Pr(𝑋 = 1, 𝑌 = 1|𝜆𝐾

1 = 0.67) is calculated similarly. The last column is the ratio of
these two, which has the same form as Equation 13.1:

Pr(𝐾 = 1|𝑋 = 1, 𝑌 = 1, 𝜆𝐾
1 = 0.67) = 0.9𝜆𝐾

1
0.9𝜆𝐾

1 + 0.5(1 − 𝜆𝐾
1 ) ≈ 0.78

We omit the 𝑋 = 0 cases from the table since there is nothing to learn from 𝐾 for these and
so our beliefs about 𝜆𝐾

1 would in such a case not change given whatever we find.

From this table, we can calculate what we are likely to find and then what we will infer when
we find it, in an 𝑋 = 1, 𝑌 = 1 case:

• Pr(𝐾 = 1|𝑋 = 1, 𝑌 = 1) = 0.63
• Pr(𝜆𝐾

1 = 2
3 |𝑋 = 1, 𝑌 = 1, 𝐾 = 1) = 0.62

• Pr(𝜆𝐾
1 = 2

3 |𝑋 = 1, 𝑌 = 1, 𝐾 = 0) = 0.29

We can now calculate the expected posterior variance as 0.224.2 This is an improvement on
the prior variance of 0.25.

Similarly, we can calculate:

2We use the fact that variance for a Bernoulli with parameter 𝑝 is 𝑝(1 − 𝑝); here,
Pr (𝜆𝐾

1 = 2
3 ) (1 − Pr (𝜆𝐾

1 = 2
3 )).
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Table 13.1: Beliefs about data outcomes under different paramater values (X=0 cases omitted).

𝜆𝐾
1 K X Y Pr(𝑋, 𝑌 , 𝐾|𝜆𝐾

1 ) Pr(𝑋, 𝑌 |𝜆𝐾
1 ) Pr(𝐾|𝑋, 𝑌 , 𝜆𝐾

1 )
0.33 0 1 0 0.17 0.18 0.91
0.67 0 1 0 0.08 0.12 0.71
0.33 1 1 0 0.02 0.18 0.09
0.67 1 1 0 0.03 0.12 0.29
0.33 0 1 1 0.17 0.32 0.53
0.67 0 1 1 0.08 0.38 0.22
0.33 1 1 1 0.15 0.32 0.47
0.67 1 1 1 0.30 0.38 0.78

• Pr(𝐾 = 1|𝑋 = 1, 𝑌 = 0) = 0.19
• Pr(𝜆𝐾

1 = 2
3 |𝑋 = 1, 𝑌 = 0, 𝐾 = 1) = 0.76

• Pr(𝜆𝐾
1 = 2

3 |𝑋 = 1, 𝑌 = 0, 𝐾 = 0) = 0.44

Now the expected posterior variance, while still an improvement over the prior, is higher than
what we expect if we choose a 𝑋 = 1, 𝑌 = 1 case, at 0.234.

In summary, under the stipulated beliefs about the world, we can learn most about the popu-
lation ATE by selecting an 𝑋 = 𝑌 = 1 for study. We learn something from an 𝑋 = 1, 𝑌 = 0
case, and nothing at all from a case with 𝑋 = 0. We can also learn about the case-level effects
for cases with 𝑋 = 1 and 𝑌 = 0. If we are interested in the case level effect for an 𝑋 = 0 case,
then there are no gains from any case-selection strategy since we know 𝐾’s value based on 𝑋
and 𝑌 ’s value.

But here’s the thing. While we have demonstrated specific gains from a 𝑋 = 1, 𝑌 = 1 case,
in this example, there is nothing generally preferable about such a case. Under a different set
of beliefs about the world, we would expect to learn more from an 𝑋 = 𝑌 = 0 case than from
an 𝑋 = 𝑌 = 1 case. Suppose, for instance, that we have a model in which:

• 𝑋 → 𝑌 ← 𝐾
• Pr(𝑌 = 1|𝑋 = 0, 𝐾 = 0) = .5
• Pr(𝑌 = 1|𝑋 = 1, 𝐾 = 0) = 0
• Pr(𝑌 = 1|𝑋 = 0, 𝐾 = 1) = .5
• Pr(𝑌 = 1|𝑋 = 1, 𝐾 = 1) = 1

In this world, we learn nothing from observing a case in which 𝑋 = 1, 𝑌 = 1 since we already
know that 𝐾 = 1. In contrast, if 𝑋 = 𝑌 = 0, then if we learn that 𝐾 = 1, we know that, were
𝑋 = 1, 𝑌 would have been 1; and if instead, we observe 𝐾 = 0, we know that 𝑌 would have
(still) been 0 if 𝑋 were 1. Now, 𝐾 is doubly decisive for an 𝑋 = 𝑌 = 0 case but unhelpful
for an 𝑋 = 𝑌 = 1 case. Our lessons for case selection get turned on their head with this new
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Table 13.2: The data we start with. If we are interested in whether 𝑋 caused 𝑌 in case 𝐴, are
we better gathering data on 𝑀𝑓𝑜𝑟 in case 𝐴 or on 𝐾 in case 𝐵?

Case X Y K M
A 1 1 1
B 0 0 1

background model. We can easily mix things up again to construct a situation in which the
off-diagonal cases are the informative ones.

In summary: beware of simple rules for case selection. Depending on the model, our priors,
and the query, any type of case can be optimal.

13.2.2 Interest in a Case Might Not Justify Selecting that Case

It seems obvious that if your query of interest is defined at the case level—not at the population
level—then the choice of cases is determined trivially by the query. Just study the case you
have a question about.

This is not correct, however.

Sometimes we might be interested in effects in case A but still be better off gathering more
information about case B instead of digging deeper into case A. We illustrate this phenomenon
for a situation in which the learning from cases operates via updating on a general model (and
subsequent application of that model to the case of interest) rather than via direct application
of a prior, informative general model to the case of interest.

We imagine a world in which we have causal model 𝑋 → 𝑀 → 𝑌 ← 𝐾, flat priors on all nodal
types, and start with access to data as in Table 13.2:

In other words, we start out with data only on clue 𝐾 in case 𝐴 and only on clue 𝑀 in case 𝐵.
We are interested specifically in whether 𝑋 mattered for 𝑌 in case 𝐴. We now want to figure
out in which case to focus our further data-collection efforts: Are we better off gathering data
on 𝑀 for case 𝐴 or on 𝐾 for case 𝐵?

Given the model, we can work out what we might find under each strategy and what we might
then infer for our query about 𝐴. These potential inferences and the associated (case level)
uncertainty are detailed in Table 13.3. Note that the probability of finding 𝐾 = 1 in case 𝐵
or 𝑀 = 1 in case 𝐴 is calculated after taking account of the data we already have on 𝐴 and
𝐵.

This table then gives us enough to calculate the expected uncertainty under each strategy.

• The baseline uncertainty for case A is 0.191.
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Table 13.3: Expected data and projected inferences on effects for case A given one additional
clue

Quantity Best guess Uncertainty
Current beliefs on A 0.257 0.191
Probability K = 1 for B 0.660
If you find K = 0 for B: 0.250 0.188
If you find K = 1 for B: 0.262 0.193
Probability M = 1 for A 0.492
If you find M = 0 for A: 0.312 0.215
If you find M = 1 for A: 0.201 0.161

• Under a strategy in which we gather data on 𝐾 in case B, the expected uncertainty for
effects in 𝐴 is 0.191 (that is, identical up to rounding errors).

• The expected uncertainty (about effects in 𝐴) from gathering data on 𝑀 in case A is
0.188.

These numbers are all very similar—highlighting the difficulty of drawing inferences without
a strong prior model based on just two cases. This is one (negative) lesson of this exercise.

Nevertheless, the expected uncertainties do diverge. Intuitively, when we investigate causal
effects in case 𝐵 we in principle benefit from a Millian logic: finding that the cases are similar on
𝐾—the moderator—makes us think it more likely that variation in 𝑋 is explaining outcomes.
At least 𝐾 is not explaining the outcome. The gain is however quantitatively small. When
we investigate case 𝐴 we are more likely to be convinced that 𝑋 mattered in case 𝐴 when we
find that differences in 𝑀—the mediator—are in line with differences in 𝑋 and 𝑌 . 𝑀 is the
path through which any effect needs to operate and if 𝑀 is similar in both cases this knocks
confidence that 𝑋 was making a difference.

So here to learn about case 𝐴, we do well by finding out more about case 𝐴, as intuition would
suggest.

Suppose, however, that we are interested in making an inference about case 𝐵. Now which
strategy would be better?

Details of the inferences we would draw about 𝑋’s effect on 𝑌 in case 𝐵 for each possible data
strategy are given in Table 13.4.

This table looks familiar (we explain why soon). We see here again that updating on case 𝐵
is also best achieved by observation of 𝑀 in case 𝐴, rather than 𝐾 in case 𝐵. In other words
tightening inferences on 𝐵 is best done by investigating 𝐴 further. In particular:

• The baseline uncertainty for case B is 0.19.
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Table 13.4: Expected data and projected inferences on effects for case B given one additional
clue

Quantity Best guess Uncertainty
Current beliefs on B 0.256 0.190
Probability K = 1 for B 0.660
If you find K = 0 for B: 0.251 0.188
If you find K = 1 for B: 0.265 0.195
Probability M = 1 for A 0.492
If you find M = 0 for A: 0.312 0.215
If you find M = 1 for A: 0.201 0.160

• Under a strategy in which we gather data on 𝐾 for case B the expected uncertainty for
effects in 𝐵 is 0.193.

• The expected uncertainty (for effects in 𝐵) from gathering data on 𝑀 in case A is 0.188.

Note that Tables Table 13.3 and Table 13.4 are in fact identical (up to simulation error be-
yond the third digit), even though they are asking about different cases. The reason is that,
regardless of which case we are interested in, the learning takes place by updating the same
population-level model, and then applying those population-level beliefs to a case. (This is
the ̂𝜋 calculation we introduced in Chapter 9.) So for both queries, the decision about which
case to choose for further study comes down to the same criterion: In which case is the clue to
be observed likely to be most informative about the effect of 𝑋 on 𝑌 in the population? The
answer is case 𝐴, where we can observe 𝑀 : This is because observing cross-case variation in
the mediator 𝑀 in this model, which we can do only by collecting more evidence on case 𝐴, is
more informative about 𝑋’s effect on 𝑌 than is observing cross-case variation in the moderator
𝐾 (which is what we get from selecting case 𝐵).

This example provides a reminder that we can learn about a case by updating a general causal
model rather than by simply applying a prior model to the case data. It confirms the possibility
of this learning, even as it highlights the possibly limited scope of learning from very few cases.
And it points to a counterintuitive implication for case selection: Sometimes (as here, where
our initial model does not imply strong probative value for clues) we can learn the most about
a case by learning as much as we can about our model, which may or may not imply collecting
additional information about the case of interest.

13.3 General Strategy

We now introduce a flexible approach to comparing the prospective learning from alternative
case-selection strategies. To help explore the intuition behind this strategy, we start by walking
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Table 13.5: Observed data

event count
X0Y0 2
X1Y0 1
X0Y1 1
X1Y1 2

through a simplified setup and then implement the approach for a range of models, strategies,
and causal queries.

13.3.1 Walk through of the General Strategy

Consider a situation in which our model is 𝑋 → 𝑀 → 𝑌 . Suppose, further, that we restrict
the nodal types so that 𝑋 cannot have a negative effect on 𝑀 , and 𝑀 cannot have a negative
effect on 𝑌 , with flat priors over all remaining nodal types. Imagine then that we begin by
collecting only 𝑋, 𝑌 data on six cases and obtain the data pattern shown in Table 13.5. We
can see that the data display a modest positive correlation between (X) and (Y), evidence
weakly suggestive of a positive average effect of (X) on (Y) given the model.

These 𝑋, 𝑌 data already give us some information about the causal effect of 𝑋 on 𝑌 . Yet, we
want to learn more by examining some subset of these cases more deeply—and, specifically, by
collecting data on 𝑀 for two of these cases. Which cases should we select? We consider three
strategies, each conditional on 𝑋 and 𝑌 values:

• Strategy 𝐴 chooses two cases on the “regression line,” implied by the data pattern, one
randomly drawn from the 𝑋 = 𝑌 = 0 cell and one randomly drawn from the 𝑋 = 𝑌 = 1
cell

• Strategy 𝐵 chooses off the regression line, one randomly drawn from the 𝑋 = 1, 𝑌 = 0
cell and one randomly drawn from the 𝑋 = 0, 𝑌 = 1 cell

• Strategy 𝐶 chooses two cases, both from the 𝑋 = 1, 𝑌 = 1 cell

How can we evaluate these strategies prospectively?

We recognize that different strategies yield different possible data patterns. For instance,
Strategy 𝐴 (on the line) could possibly give us a data pattern that includes the observation
𝑋 = 0, 𝑀 = 0, 𝑌 = 0. Yet Strategy 𝐴 cannot possibly yield a data pattern that includes
the observation 𝑋 = 1, 𝑀 = 0, 𝑌 = 0—because it does not involve the inspection of 𝑀 in an
𝑋 = 1, 𝑌 = 0 case—whereas Strategy 𝐵 (off the line) can yield a pattern that includes this
observation. And none of the three strategies can possibly yield a pattern that includes both
𝑋 = 1, 𝑀 = 0, 𝑌 = 0 and 𝑋 = 0, 𝑀 = 1, 𝑌 = 0.
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In Table 13.6, we represent the full set of possible data patterns that can arise from each
strategy, with the possible data patterns for strategy 𝐴 or 𝐵 labeled 𝐴1, 𝐴2, etc. or 𝐵1, 𝐵2,
etc., respectively. For instance, 𝐴 is a strategy in which we look for 𝑀 in one 𝑋 = 0, 𝑌 = 0
case and one 𝑋 = 1, 𝑌 = 1 case. 𝐴1, then, is a realization in which we observe 𝑀 = 0 in
both cases. As we can see, there are four possible data patterns from strategies 𝐴 and 𝐵,
representing the four different combinations of 𝑀 values we might find across the two cases
selected for deeper investigation. There are three possible outcomes from strategy 𝐶. In the
comparison presented here, none of the possible data patterns overlap across strategies.

The next step is to grapple with the fact that not all possible data realizations for a given
strategy are equally likely to emerge. We represent the data probabilities near the bottom of
the table. How likely a data pattern is to emerge will depend on the model, any restrictions or
priors we have built into the model, and any updating of beliefs that arises from the pure 𝑋, 𝑌
data. Note, for instance, that data pattern 𝐴3 is much more likely to emerge than the other
data patterns possible under Strategy 𝐴. This is for two reasons. One is that 𝐴3 involves 𝑀
co-varying with 𝑋 and 𝑌 , a pattern consistent with 𝑋 having an effect on 𝑌 —since, in this
model, 𝑋 can only affect 𝑌 if it affects 𝑀 and if 𝑀 effects 𝑌 . Data patterns 𝐴1 and 𝐴4 have
𝑀 constant between the two cases, even as 𝑋 and 𝑌 vary; this is a pattern inconsistent with 𝑋
having an effect on 𝑌 . 𝐴3, then, is more likely than 𝐴1 or 𝐴4 because the restrictions on the
model plus the evidence from the 𝑋, 𝑌 data make us believe that 𝑋 does have an average effect
on 𝑌 . Second, we believe 𝐴3 is more probable than 𝐴2 because of the model’s restrictions:
The model allows positive effects of 𝑋 on 𝑀 and of 𝑀 on 𝑌 (a way of generating 𝐴3), but
rules out negative intermediate effects (a way of generating 𝐴2).

Finally, each possible data realization will (if realized) generate (possible) updating of our
beliefs about the query of interest. In the second-to-last row of Table 13.6, we can see the
mean of the posterior distribution (for the ATE of 𝑋 on 𝑌 ) under each data pattern.

How do we now evaluate the different strategies? This is the same as asking what our loss
function is (or utility function or objective function). As in Chapter 12 we will focus on
posterior variance and in particular, expected posterior variance, though we emphasize that
the same procedure can be used with other loss functions (a natural candidate from the study
of experimental design is the expected information gain (Lindley 1956)3.

The posterior variance on the ATEs for each data pattern, is represented in the table’s final
row. We can see that our level of posterior uncertainty varies across possible data realizations.
We operationalize the expected learning under each case-selection strategy as the expected
reduction in posterior variance.

From the probability of each data type (given the model and the 𝑋, 𝑌 data seen so far)
and the posterior variance given each data realization, the implied expected variance is easily
calculated as a weighted average. The expected posterior variances for our three strategies are
summarized in Table 13.7.

3Equation 7 Lindley (1956) defines the average gain from an experiment as 𝐸𝑥(𝐼1(𝑥)−𝐼0)] where 𝑥 is the data
that might be observed, given the design, and 𝐼1(𝑥) = ∫ 𝑝(𝜃|𝑥) log(𝑝(𝜃|𝑥))𝑑𝜃 and 𝐼0 = ∫ 𝑝(𝜃) log(𝑝(𝜃))𝑑𝜃).
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Table 13.6: Each column shows a possible distribution of data that can be generated from a
given strategy. We calculate the probability of each data possibility, given the data
seen so far, and the posterior variance associated with each one.

event A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3
X0M0Y0 1 0 1 0 0 0 0 0 0 0 0
X0M0Y1 0 0 0 0 1 0 1 0 0 0 0
X0M1Y0 0 1 0 1 0 0 0 0 0 0 0
X0M1Y1 0 0 0 0 0 1 0 1 0 0 0
X0Y0 1 1 1 1 2 2 2 2 2 2 2
X0Y1 1 1 1 1 0 0 0 0 1 1 1
X1M0Y0 0 0 0 0 1 1 0 0 0 0 0
X1M0Y1 1 1 0 0 0 0 0 0 2 1 0
X1M1Y0 0 0 0 0 0 0 1 1 0 0 0
X1M1Y1 0 0 1 1 0 0 0 0 0 1 2
X1Y0 1 1 1 1 0 0 0 0 1 1 1
X1Y1 1 1 1 1 2 2 2 2 0 0 0
Probability 0.167 0.029 0.634 0.17 0.263 0.237 0.231 0.269 0.077 0.237 0.685
Posterior mean 0.077 0.041 0.17 0.078 0.13 0.14 0.14 0.13 0.047 0.09 0.161
Posterior variance 0.007 0.003 0.02 0.007 0.017 0.018 0.018 0.017 0.003 0.009 0.019

Table 13.7: Expected posterior variances

Strategy Variance
Offline 0.0173
Online 0.0151
Two X=1, Y=1 cases 0.0156
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In this example, we see that we would expect to be better off—in the sense of having less
posterior uncertainty—by focusing our process-tracing efforts on the regression line than off the
regression line. We only do marginally better by spreading over the line than by concentrating
on positive cases. We save an account of the intuition underlying this result for the discussion
of our more extensive simulations below.

The key takeaway here is the procedure for assessing case-selection strategies:

1. Derive from the model the full set of possible data patterns under each case-selection
strategy being assessed.

2. Calculate the probability of each data pattern given the model (with any priors or re-
strictions), the prior 𝑋, 𝑌 data, and the strategy.

3. Generate a posterior distribution on the query of interest for each data pattern.
4. Use the probability of different data patterns together with the posterior variance under

each data pattern to calculate the expected posterior variance on the query of interest
for each strategy.

13.3.2 Simulation Strategy

In this section, we generalize the model-based approach by applying it to a wide range of
models, queries, and case-selection strategies.

In all scenarios examined here, we imagine a situation in which we have already observed
some data (the values of some nodes from the causal model in some set of cases) and must
now decide in which cases we should gather additional data. We will assume throughout that
we are considering gathering additional observations in cases for which we already have some
data. In other words, we are deciding which subset of the cases—among those we have already
gathered some data on—we should investigate more deeply. (This is distinct from the question
of “wide vs. deep,” examined in Chapter 14, where we might decide to observe cases we have
not yet seen at all.)

The general intuition of the case-selection approach that we develop here is that we can use
our causal model and any previously observed data to estimate what observations we are more
or less likely to make under a given case-selection strategy, and then figure out how uncertain
we can expect to end up being under the strategy, given whatever causal question we seek to
answer.

We proceed as follows:

DAG. We start, as always, with a DAG representing our beliefs about which variables we
believe to be direct causes of other variables. For the current illustrations, we consider four
different structures:

• Chain model: an 𝑋 → 𝑀 → 𝑌 model, where 𝑀 is a mediator
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• Confounded model: a model with 𝑋 → 𝑌 and with 𝑀 as a confounder, pointing into
both 𝑋 and 𝑌

• Moderator model: an 𝑋 → 𝑌 ← 𝑀 , model, where 𝑀 is a moderator
• Two-path model: a model in which 𝑋 → 𝑀 → 𝑌 ← 𝑋, meaning that 𝑋 can affect 𝑌

both through a direct path and indirectly via 𝑀

Restrictions or priors. We can augment the models to allow for informative priors or
restrictions on nodal types. Here, for each model, we examine a version with no restrictions
and a version with monotonicity restrictions.

Given data. If we have already made observations of any of the model’s nodes in some
set of cases, we can use this information to condition our strategy for searching for further
information. For instance, if we have observed 𝑋’s and 𝑌 ’s values in a set of cases, we might
select cases for process tracing based on their values of 𝑋 and/or 𝑌 . And, importantly, what
we have already observed in the cases will affect the inferences we will draw when we observe
additional data, including how informative a particular new observation is likely to be.

For the simulations, we assume that we have already observed 𝑋 and 𝑌 in a set of cases and
found a positive correlation. Specifically, for all simulations, we assume prior 𝑋, 𝑌 data of
𝑁 = 6, with a weak positive relationship (2 𝑋 = 1, 𝑌 = 1 cases, 2 𝑋 = 0, 𝑌 = 0 cases, and
1 case in each off-diagonal cell). And it is from these original six cases that we are selecting
our cases for process tracing. In the experiments below, we do not examine how the prior
data itself might affect the choice of case-selection strategies (as we do, for instance, with clue-
selection in Chapter 12), but we invite the reader to explore these relationships by adjusting
the code we provide in Supplementary Material.

Query. We define our query. This could, for instance, be 𝑋’s average effect on 𝑌 or it might
be the probability that 𝑋 has a negative effect on 𝑌 in an 𝑋 = 1, 𝑌 = 0 case. We can use the
general procedure to identify case-selection strategies for any causal query that can be defined
on a DAG. And, importantly, the optimal case-selection strategy may depend on the query.
The best case-selection strategy for answering one query may not be the best case-selection
strategy for another query.

In the simulations, we examine four common queries:

• ATE: What is the average effect of 𝑋 on 𝑌 for the population?
• Probability of positive causation: What is the probability that 𝑌 = 1 because 𝑋 = 1 for

a case randomly drawn from the population of 𝑋 = 1, 𝑌 = 1 cases?
• Probability of negative causation: What is the probability that 𝑌 = 1 is due to 𝑋 = 0

for a case randomly drawn from the population of 𝑋 = 0, 𝑌 = 1 cases?
• Probability of an indirect effect: Defined only for the two-path models, we estimate the

probability that the effect of 𝑋 on 𝑌 operates through the indirect path. More precisely,
we ask, for an 𝑋 = 1, 𝑌 = 1 case in which 𝑋 = 1 caused 𝑌 = 1, what the probability is
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that that effect would have occurred if 𝑀 were held fixed at the value it takes on when
𝑋 = 1.4

Define one or more strategies. A strategy is defined, generically, as the search for data on
a given set of nodes, in a given number of cases that are randomly selected conditional on some
information we already have about potential cases. In the simulations below, our strategy will
always involve uncovering 𝑀 ’s value in one or two cases. What we are wondering is how to
choose these one or two cases for deeper analysis.

Specifically, for our simulations, we assess the contributions of eight strategies, with inferences
from the 𝑋, 𝑌 data alone serving as our baseline. In the figures below, the strategies run along
the 𝑋−axis of each graph and can be interpreted as follows:

• Prior: conduct no intensive analysis, with beliefs based on 𝑋, 𝑌 data only.
• 1 off: data on 𝑀 is sought in one case in the 𝑋 = 1, 𝑌 = 0 cell
• 1 on: data on 𝑀 is sought in one case in the 𝑋 = 1, 𝑌 = 1 cell
• 2 off: data on 𝑀 is sought in one 𝑋 = 0, 𝑌 = 1 case and one 𝑋 = 1, 𝑌 = 0 case
• 2 pos: data on 𝑀 is sought for two cases in the 𝑋 = 1, 𝑌 = 1 cell
• 2 on: data on 𝑀 is sought in one 𝑋 = 1, 𝑌 = 1 case and one 𝑋 = 0, 𝑌 = 0 case
• fix 𝑋: a strategy in which we seek 𝑀 in two cases in which a causal condition was

present, with 𝑋 fixed at 1, one with 𝑌 = 0 and one with 𝑌 = 1
• fix 𝑌 : a strategy in which we seek 𝑀 in two cases in which a positive outcome was

observed, with 𝑌 fixed at 1, one with 𝑋 = 0 and one with 𝑋 = 1

These are all “pure” strategies in the sense that the number of units for which data on 𝑀 is
sought in each cell is fixed. One could also imagine random strategies in which a researcher
chooses at random in which cells to look. For example, if we choose one case at random, we
are randomly choosing between a case on the regression line and a case off the line. The
performance of a random strategy will be a weighted average of the pure strategies over which
the random strategy is randomizing.

Possible data. For each strategy, there are multiple possible sets of data that we could end
up observing. In particular, the data we could end up with will be the 𝑋, 𝑌 patterns we have
already observed, plus some pattern of 𝑀 observations.

Probability of the data. We then calculate a probability of each possible data realization,
given the model (with any restrictions or priors) and any data that we have already observed.
Starting with the model together with our priors, we update our beliefs about 𝜆 based on
the previously observed data. This posterior now represents our prior for the purposes of the
process tracing. In the analyses below, we use the already-observed 𝑋, 𝑌 correlation to update
our beliefs about causal-type share allocations in the population. We then use this posterior
to draw a series of 𝜆 values.

4In code, this somewhat complicated query is expressed as "Y[X=0, M=M[X=1]]==Y[X=1, M=M[X=1]]", given
"(X == 1 & Y == 1) & (Y[X=1]>Y[X=0])".
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Given that the ambiguities matrix gives us the mapping from causal types to data realizations,
we can calculate for each 𝑙𝑎𝑚𝑏𝑑𝑎 draw, the probability of each data possibility given that
particular 𝜆 and the strategy. We then average across repeated 𝜆 draws to get the probability
of each possible data realization.

Posterior on estimate given the data. For each data possibility, we can then ask what
inference we would get from each data possibility, given whatever query we seek to answer, as
well as the variance of that posterior. Examining the inferences from possible data-realizations,
as we do below, can help us understand how the learning unfolds for different strategies.

Expected posterior variance under each strategy. The quantity of ultimate interest
is the posterior variance that we expect to end up with under each strategy. The expected
posterior variance is simply an average of the posterior variances under each data possibility,
weighted by the probability of each data possibility. We operationalize the expected learning
under a strategy as the expected reduction in posterior variance arising from that strategy.

13.3.3 Results

The main results are shown in Figures Figure 13.1 and Figure 13.2.

The two figures take two different approaches to representing the value of alternative strate-
gies. In Figure 13.1, we examine the informativeness of strategies by showing how much
our inferences depend on what we observe within the cases. For a given model, query, and
case-selection strategy, we plot the inferences we would draw from each of the possible data-
realizations under the strategy. (Where inferences do not depend on the observed data, the
multiple points are superimposed upon one another.) Generally, a larger spread across points
(for a given model-query-strategy combination) represents a greater opportunity for learning
from the data. However, as expected learning is also a function of how likely each data real-
ization is, we represent the probability of each potential inference via shading of the points.
In Figure 13.2, we directly plot expected learning, operationalized as the expected reduction
in posterior variance.

In the remainder of this section, we walk through the results and suggest, often tentatively,
interpretations of some of the more striking patterns. We caution that reasoning one’s way
through expected learning for different model-query-strategy combinations, given a particular
pattern in the prior data, can be tricky—hence, our recommendation that researchers simulate
their way to research-design guidance, rather than relying on intuition.

13.3.3.1 𝑁 = 1 Strategies, Unrestricted Models

Suppose we can only conduct process tracing (observe 𝑀) for a single case drawn from our
sample of six 𝑋, 𝑌 cases. Should we choose a case from on or off the regression line implied by
the 𝑋, 𝑌 pattern? In Figure 13.1, we can see that for all unrestricted models, our inferences
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Figure 13.1: Inferences given observations
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are completely unaffected by the observation of 𝑀 in a single case, regardless of which case-
selection strategy we choose and regardless of the query of interest. We see only one point
plotted for the two 𝑁 = 1 strategies for all unrestricted models and all queries because the
inference is the same regardless of the realized value of 𝑀 . In Figure 13.2, we see, in the same
vein, that we expect 0 reduction in expected posterior variance from these 𝑁 = 1 strategies:
They cannot make us any less uncertain about our estimates because the observations we glean
cannot affect our beliefs.

To see why, let’s first consider the on-the-line strategy. Not having observed 𝑀 previously, we
still have flat priors over the nodal types governing 𝑋’s effect on 𝑀 and 𝑀 ’s effect on 𝑌 . That
is to say, we still have no idea whether 𝑋’s positive effect on 𝑌 (if present) more commonly
operates through a chain of positive effects or a chain of negative effects. Thus, the observation
of, say, 𝑀 = 1 in an 𝑋 = 1, 𝑌 = 1 case is equally consistent with a positive 𝑋 → 𝑌 effect
(to the extent that effect operates via linked positive effects) and with no 𝑋 → 𝑌 effect (to
the extent positive effects operate through linked negative effects). Observing 𝑀 = 1 in an
𝑋 = 1, 𝑌 = 1 case, therefore, tells us nothing about the causal effect in that case and, thus,
nothing about the average effect either.

Similarly, we have no idea whether 𝑋’s negative effect on 𝑌 (if present) operates through a
positive-negative chain or a negative-positive chain, making 𝑀 = 1 or 𝑀 = 0 in an 𝑋 = 1, 𝑌 =
0 case both equally consistent with a negative or null 𝑋 → 𝑌 effect, yielding no information
about causation in the case. By a similar logic, observing 𝑀 = 1 in the 𝑋 = 1, 𝑌 = 1 case
is uninformative about negative effects in an 𝑋 = 0, 𝑌 = 1 case, and observing 𝑀 = 1 in an
𝑋 = 1, 𝑌 = 0 case tells us nothing about positive effects in an 𝑋 = 1, 𝑌 = 1 case.

The same logic applies to drawing inferences from 𝑀 as a moderator or to learning from 𝑀
about indirect effects. In the absence of prior information about effects, one case is not enough.
For more intuition about this finding, see Section 7.5.1.

13.3.3.2 𝑁 = 1 Strategies, Monotonic Models

The situation changes, however, when we operate with models with monotonicity restrictions
(as it would more generally for models with informative, rather than flat, priors). Now we can
see that our inferences on the queries do generally depend on 𝑀 ’s realization in a single case
and that we expect to learn. For many model-query combinations, the two 𝑁 = 1 strategies
perform comparably, but there are situations in which we see substantial differences.

Most notably, in a chain model with negative effects ruled out by assumption, we learn almost
nothing from choosing an off-the-line case: This is because we already know from the model
itself that there can be no 𝑋 → 𝑌 effect in such a case since such an effect would require
a negative effect at one stage. The only learning that can occur in such a case is about
the prevalence of positive effects (relative to null effects) at individual stages (𝑋 → 𝑀 and
𝑀 → 𝑌 ), which in turn has implications for the prevalence of positive effects (relative to null
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effects) of 𝑋 on 𝑌 . Likely for similar reasons, in the monotonic two-path model, an on-the-
line case is much more informative than an off-the-line case about the ATE and about the
probability that the effect runs via the indirect path.

Interestingly, however, the on-the-line strategy is not uniformly superior for an 𝑁 = 1 process-
tracing design. We appear to learn significantly more from an off-the-line case than an on-
the-line case when estimating the share of positive effects in the population of 𝑋 = 1, 𝑌 = 1
cases and operating with a monotonic confounded or two-path model. At first, this seems
surprising: Why would we not want to choose an 𝑋 = 1, 𝑌 = 1 case for learning about the
population of 𝑋 = 1, 𝑌 = 1 cases? One possible reason is that, in the on-the-line case, one data
realization is much more likely than the other, while we are more uncertain about what we
will find in the off-the-line case. For instance, in the confounding model with monotonicity, in
an 𝑋 = 1, 𝑌 = 1 case we would learn about the prevalence of confounding from seeing 𝑀 = 0
(where confounding cannot be operating since negative effects are excluded) as opposed to
𝑀 = 1; but we do not expect to see 𝑀 = 0 when both of its children (𝑋 and 𝑌 ) take a
value of 1 while negative effects are excluded. In an 𝑋 = 1, 𝑌 = 0 case, however, 𝑀 = 0 and
𝑀 = 1 are about equally likely to be observed, and we can learn about confounding from each
realization. We can see these differences in relative data probabilities from the shadings in the
graphs, where we have more even shading for the possible inferences from the one-off strategy
than for the one-on strategy.

The general point here is that we expect to learn more from seeking a clue the more uncer-
tain we are about what we will find, and some case-selection strategies will give us better
opportunities to resolve uncertainty than others.

13.3.3.3 𝑁 = 2 Strategies, Unrestricted Models

Next, we consider the selection of two of our six cases. Now, because we are observing 𝑀 in
two cases, we can learn from the variation in 𝑀 across these cases—or, more specifically, from
its covariation with 𝑋 and with 𝑌 . This should matter especially for unrestricted models,
where we start out with no information about intermediate causal effects (e.g., whether they
are more often positive or more often negative). Thus, when we only process trace one case,
we cannot learn about causal effects in the cases we process trace since we don’t know how to
interpret the clue. In contrast, if we observe 𝑀 in two or more cases, we do learn about causal
effects for those cases because of the leverage provided by observing covariation between the
process-tracing clue and other variables.

We assess the expected gains from five 𝑁 = 2 strategies: examine two off-the line cases, one
𝑋 = 1, 𝑌 = 0 case and one 𝑋 = 0, 𝑌 = 1 case; examine two on-the-line cases, an 𝑋 = 𝑌 = 0
case and an 𝑋 = 𝑌 = 1 case; examine two treated, positive outcome (𝑋 = 𝑌 = 1) cases; select
on 𝑋 by examining two 𝑋 = 1 cases with different 𝑌 values; and select on 𝑌 by examining
two 𝑌 = 1 cases with different 𝑋 values.
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A key message of these results is that each strategy’s performance depends quite heavily on the
model we start with and what we want to learn. For instance, when estimating the ATE, the
on-the-line strategy in which we disperse the cases across cells (two-on) clearly outperforms
both the dispersed off-the-line strategy (two-off) and an on-the-line strategy in which we
concentrate on one cell (two-pos) if we are working with an unrestricted chain model, and the
off-the-line strategy is clearly the worst-performing of the three. The differences in learning
about the ATE are more muted, however, for an unrestricted confounded model, and the
two-pos strategy does better than the other two for a two-path model.

If we seek to learn about the probability of positive causation in an 𝑋 = 1, 𝑌 = 1 case, then
there is little difference between two-off and two-pos, with two-on performing best. We also
see that two-pos has lost its edge in an unrestricted two-path model, with no strategy offering
leverage. When estimating the probability of a negative effect for an 𝑋 = 0, 𝑌 = 1 case, we
see that the two-off strategy performs best for the chain model, but that the two-pos strategy
offers the greatest leverage in a two-path model. Finally, when estimating the probability of
an indirect positive effect in an unrestricted two-path model, we get the most from a two-on
strategy, though the two-off strategy does moderately well.

In general, selecting conditional on a fixed value of 𝑋 or 𝑌 (while dispersing on the other
variable) does not do particularly well in unrestricted models, and it does not usually matter
much which variable we fix on. There are exceptions, however. Perhaps most strikingly, in a
two-path unrestricted model, we do relatively well in estimating the probability of an indirect
positive effect when we fix 𝑌 but stand to learn nothing if we fix 𝑋. Interestingly, fixing 𝑌
generally does better than fixing 𝑋 across all model-query combinations shown, given the prior
data pattern we are working with.

This pattern is particularly interesting in light of canonical advice in the qualitative methods
literature. King et al. (1994) advise selecting for variation on the explanatory variable and, as a
second-best approach, on the dependent variable… And they warn sternly against selection for
variation on both at the same time. But note what happens if we follow their advice. Suppose
we start with an unrestricted chain model, hoping to learn about the 𝐴𝑇 𝐸 or probability of
positive causation, and decide to select for variation on 𝑋, ignoring 𝑌 . We might get lucky
and end up with a pair of highly informative on-the-line cases. But, depending on the joint
𝑋, 𝑌 distribution in the population, we might just as easily end up with a fairly uninformative
off-the-line case or 𝑋 = 0, 𝑌 = 1, 𝑋 = 1, 𝑌 = 1 pair. We do better if we intentionally select
on both 𝑋 and 𝑌 in this setup. This is equally true if we want to learn about the probability
of negative effects in this model, in which case we want to choose an off-the-line case, or if
we want to learn about positive indirect effects in a two-path model, where we want both 𝑋
and 𝑌 to be 1. King, Keohane, and Verba’s advice makes sense if all we are interested in is
examining covariation between 𝑋 and the 𝑌 : Then we can learn from forcing 𝑋 to vary and
letting 𝑌 ’s values fall where they may. However, seeking leverage from the observation of a
third variable is a different matter. As our simulations indicate, the strategy from which we
stand to learn the most will depend on how we think the world works and what we want to
learn.
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13.3.3.4 𝑁 = 2 Strategies, Monotonic Models

Generally speaking, we get more leverage across strategies, models, and queries if we are
willing to rule out negative effects by assumption. The most dramatic illustration of this is
in a comparison of the unrestricted to a monotonic moderator and two-path models, where
we face bleak prospects of learning about the ATE and the probability of positive effects in
an unrestricted model, regardless of strategy. Imposing monotonicity assumptions on these
two models makes for relatively similar ATE-learning opportunities across 𝑁 = 2 strategies
while boosting the relative performance of two-on (best) and two-off (second-best) strategies
for learning about the probability of positive causation.

The relative performance also flips in some places. For instance, whereas two-pos gives us
the most leverage for estimating the 𝐴𝑇 𝐸 in an unrestricted two-path model, the two-on
strategy is optimal once we impose monotonicity. And two-pos leapfrogs two-off for estimating
positive indirect effects when we go from an unrestricted to a monotonic two-path model. The
opposite seems to be true for estimating the 𝐴𝑇 𝐸 or the probability of positive causation
in a confounded model, where two-off does relatively better when we introduce monotonicity
restrictions.

13.4 Conclusion

A small number of summary conclusions stand out.

First, case selection, in general, depends on the purpose of an investigation, captured here by
the query. Considerations differ ifdepending on whether your interest in a case is in learning
about the specific case you select or in using the case to learn about a population. Clarity
on that overarching purpose is critical, though sometimes absent from discussions of case
selection in the existing literature. More generally, although we often focus on simple queries
like case-level or average causal effects, the set of queries that might motivate you may be
endless. You might focus on estimating effects for units with particular characteristics, on
figuring out which interventions have the biggest impact at the lowest cost, on identifying the
interventions that have the most equal impact across units, or on learning about likely effects
in a new population that has different characteristics from the one that data have been drawn
from. Each of these goals might imply a different case-selection strategy.

Second, we see lessons here specifically for population-level inference. One case, we find,
generally will not help unless our model already presupposes probative value—for instance, if
we build in monotonicity assumptions. Two cases can be enough to generate probative value
where we had none before. What is learned from a particular case depends on what other cases
we have selected. For instance, we very often do better when we choose cases with different
𝑋, 𝑌 values — yet even this possibility depends on the model and the query.
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A more pessimistic set of implications of these simulations points to the limits to learning
about populations from in-depth investigation of a set of cases. For one thing, studying a
small number of cases will, in general, yield quite modest learning about the population they
are drawn from. In addition, we find that learning about some queries can be very difficult
in the context of some models. For instance, we found it especially hard to get traction on
the ATE and the probability of positive causal effects from a mediator clue in an unrestricted
two-path model—though we do much better when our query shifts to figuring out the path
through which effects operate. In short, a research strategy that combines extensive 𝑋, 𝑌 -style
analysis with drilling down on a subset of cases can, but is not guaranteed to, provide leverage
on the population of interest.

The highest-level lesson from this exercise is the sensitivity of case-selection strategy to models
and queries; these determine when different case-level findings will be informative and in which
combinations they are most informative. This finding calls for skepticism about broad rules for
case selection that provide guidance without taking account of background beliefs about how
the world works or the specific question being asked. More positively, as we show in action
here, if you can describe your model, your priors, and the data you already have, there is a
fairly simple procedure for figuring out where to go next.
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14 Going Wide, Going Deep

Chapter summary

We turn to the problem of choosing between going “wide” and going “deep”: between
seeking a little bit of information on a large number of cases versus studying a smaller
number of cases intensively. We outline a simulation-based approach to identifying the
optimal mix of breadth and depth. Simulations suggest that going deep is especially
valuable where confounding is a concern, for queries about causal pathways, and where
models embed strong beliefs about causal effects. We also find that there are diminishing
marginal returns to each strategy, and that depth often provides the greatest gains when
we have cross-case evidence on only a modest number of cases.

We continue exploring how we can leverage causal models in making research-design choices
by thinking about the tradeoff between intensive (deep) and extensive (wide) analysis.

Suppose that we have identified those clues that will be most informative and those cases in
which it would be most valuable to conduct process tracing, given our beliefs about the world.
A further question that we face is the classic challenge of methods mixing: What mixture of
quantitative and qualitative evidence is optimal? We argued in Chapter 9 that the distinction
between quantitative and qualitative inference is, in a causal-model framework, without much
of a difference. But here we frame a more precise question: Given finite resources, how should
we trade off between studying a larger number of cases at a given level of intensiveness, on the
one hand, and drilling down to learn more intensively about some subset of the cases in our
sample? How should we decide between going “wide” and going “deep”?

Just as with the selection of clues and cases examined in Chapters Chapter 12 and Chapter 13,
how much we should expect to learn from going wide versus going deep will depend on our
queries as well as on how we think the world works, as expressed in the causal model with
which we start and as shaped by the data that we have seen at the point of making the
wide-versus-deep decision.

We examine here queries commonly associated with large-𝑁 , quantitative strategies of anal-
ysis (such as average treatment effects), as well as queries commonly associated with more
case-oriented, qualitative approaches (queries about causal pathways and about causal effects
at the case level). The analysis in this chapter makes clear the opportunities for integration
across these lines of inquiry. We show that investing in in-depth process tracing will sometimes
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make sense even when one aims to learn about average effects in a population. Likewise, col-
lecting 𝑋, 𝑌 data can sometimes help us draw inferences that will aid in case-level explanation.
Particular kinds of case-level information can teach us about populations, and understanding
population-level patterns can help us get individual cases right.

14.1 Walk-Through of a Simple Comparison

To build up our intuitions about how the optimal mix of strategies might depend on how the
world works, let us explore a simple comparison of wide and deep strategies.

Imagine a world in which we have a large amount of data on 𝑋 and 𝑌 (2000 observations), and
we see that 𝑋 and 𝑌 are perfectly correlated. We might be tempted to infer that 𝑋 causes
𝑌 . If 𝑋 were randomly assigned, then we might be able to justify that inference. Suppose,
however, that our data are observational and, in particular, we are aware of an observable
confound, 𝑀 , that might determine both 𝑋 and 𝑌 . In that situation, the effect of 𝑋 on 𝑌
is not identified. As shown by Manski (1995), this data pattern could be produced even if 𝑋
had no effect but all those cases that were destined to have 𝑌 = 1 were assigned to 𝑋 = 1
while all those who would have had 𝑌 = 0 regardless were assigned to 𝑋 = 0. Indeed different
priors could support beliefs about that the average effect lying anywhere between 0 and 1.

From Pearl’s (2009) backdoor criterion, however, we also know that if the right causal model
is 𝑋 → 𝑌 ← 𝑀 → 𝑋, then data on 𝑀 would allow the effect of 𝑋 on 𝑌 to be identified. We
could estimate the effect of 𝑋 on 𝑌 for 𝑀 = 0 and for 𝑀 = 1 and take the average. Let’s
imagine that we think that this structural model is plausible. Substantively, we think we can
gather data on how units are selected into treatment.

Suppose now that we aim to collect additional data, but that data on 𝑀 for a single unit is far
more costly than data on 𝑋 and 𝑌 for a single unit. We thus face a choice between gathering
a lot more data on 𝑋 and 𝑌 (say, for 2000 more cases) or gathering a little data on 𝑀 for a
subset of cases—just 20 in this illustration. Which should we do? Are 20 cases sufficient to
learn enough about the causal model to find out whether the correlation between 𝑋 and 𝑌 is
spurious or not?

We get an intuition for the answer by imagining the inferences we might draw in three extreme
cases and comparing these to the base case. Figure 14.1 illustrates. The figures are generated
by forming a model with 𝑋 → 𝑌 ← 𝑀 → 𝑋, strong priors that Pr(𝑀 = 1) = 0.5, and flat
priors on all other nodal types. In other words, in our priors, we think that 𝑀 is equally likely
to be a 0 or 1 but do not make assumptions about how it is related to 𝑋 and 𝑌 . We first
update the model with a set of 𝑋, 𝑌 data—and then choose between going wider and going
deeper.

Panel 1 in Figure 14.1 shows our posterior distribution over the average causal effect from
observation of the base data: 2000 cases with 𝑋 and 𝑌 perfectly correlated. The distribution
is quite wide, despite the strong correlation, because the posterior includes our uncertainty over
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Figure 14.1: Posteriors on the ATE given different strategies and data patterns.
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the nature of confounding. Our estimate for the 𝐴𝑇 𝐸 is 0.86 but with a posterior standard
deviation of 0.1524. There is positive weight on all positive values of the 𝐴𝑇 𝐸.

How can we improve on this estimate?

One possibility would be to go wide and collect 𝑋, 𝑌 data on an additional 2000 cases. Panel
2 displays our posterior on the average causal effect with the addition of these 2000 cases. We
assume that the new data also displays a perfect 𝑋, 𝑌 correlation, like the first set of data.
Again, we could not imagine correlational data that more strongly confirms a positive relation,
and now we have twice as much of it. What we see, however, is that investing in gathering
data on 2000 additional cases does not help us very much. The mean of our posterior on the
𝐴𝑇 𝐸 is now 0.88, with a standard deviation of 0.1485. So the updating is very slight.

Suppose that, for the cost of gathering 𝑋, 𝑌 data on an additional 2000 cases, we could drill
down on a random subset of 20 of the original 2000 cases and observe 𝑀 in those cases. What
might we learn?

Because we start out with a flat prior on how 𝑀 will relate to 𝑋 and 𝑌 , we display inferences
for two possible realizations of that pattern. In Panel 3, we show the updating if 𝑀 turns out
to be uncorrelated with both 𝑋 and 𝑌 . The mean of our posterior on the 𝐴𝑇 𝐸 now rises to
0.98, and the posterior standard deviation shrinks dramatically, to 0.004. Greater depth in
a relatively small number of cases is enough to convince us that the 𝑋, 𝑌 relationship is not
spurious.

Panel 4 shows inferences from the same “going deep” strategy but where 𝑀 turns out to be
perfectly correlated with 𝑋 and 𝑌 . Now our estimate for the 𝐴𝑇 𝐸 shifts downward to 0.79,
with a posterior standard deviation of 0.1661. In this case, we have no leverage to estimate
covariation between 𝑋 and 𝑌 within each 𝑀 condition. However, we do not give up on
the possibility of strong treatment effects. Indeed while the data are consistent with perfect
confounding and no true causal effect, they are also consistent with perfect confounding and
a strong causal effect. We just can’t tell these apart.

In other words, in this setup, what we observe from our “going deep” strategy can have a big
impact on our inferences. One reason we stand to learn so much from process-tracing so few
cases is that the process-tracing speaks to relationships about which we start out knowing so
little: 𝑀 ’s effect on 𝑋 and 𝑀 ’s effect on 𝑌 , effects on which the 𝑋, 𝑌 data themselves shed
no light.

It is also interesting to note that we cannot learn as much by updating only using information
from the 20 cases for which we have full 𝑋, 𝑀 , 𝑌 data. Were we to use only the subset with
this complete data—ignoring the other 1880 cases—and observe 𝑀 to be uncorrelated with
𝑋 and 𝑌 , the mean of our posterior on the 𝐴𝑇 𝐸 would be 0.98 with a posterior standard
deviation of 0.004 (not graphed). The breadth provided by those 1880 𝑋, 𝑌 -only cases thus
adds a great deal. While observing an uncorrelated 𝑀 in 20 cases allows us to largely rule out
𝑀 as a cause of any 𝑋, 𝑌 correlation, observing a strong 𝑋, 𝑌 correlation over a large number
of cases provides evidence that 𝑋 in fact affects 𝑌 .
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We use this example to highlight a simple but stark point: There will be situations in which the
expected gains from collecting more data on the same cases and from collecting the same data
on more cases will be different, sometimes very different. The model and the prior data shape
the tradeoff. In this particular setup, it is the confounding together with the large number
of prior 𝑋, 𝑌 observations that makes depth the better strategy. Once we have learned from
2000 𝑋, 𝑌 observations, data of the same form from more cases will not change beliefs. Yet
going deep—even if only in a few cases—provides information on parameters we know nothing
about, helping us draw causal inferences from the 𝑋, 𝑌 correlation.

14.2 Simulation Analysis

While the results in the last section are striking, they depend upon particular realizations of
the data under each strategy. When selecting strategies we, of course, do not know how the
data will turn out. Our problem becomes, as in the clue- and case-selection analyses, one of
figuring out the expected posterior variance from different strategies.

14.2.1 Approach

The more general, simulation-based approach that we introduce here is parallel to the approach
for clue- and case-selection. The steps of this procedure are as follows:

1. Model. We posit a causal model, along with any priors or restrictions.
2. Prior data. We specify the data that we already have in hand. For the simulations

below, we assume no prior data.
3. Strategies. We then specify a set of mixing strategies to assess. A strategy, in this

context, is defined as a combination of collecting data on the same nodes for a given
number of additional cases (randomly drawn from the population) and collecting data
on additional nodes for some number of cases randomly sampled from the first set of
cases.

4. Data possibilities. For each strategy, we define the set of possible data-realizations.
Whereas for case-selection, the structure of the possible data-realizations will be the same
for all strategies with a given 𝑁 , possible data patterns in wide-versus-deep analyses
involve much greater complexity and will vary in structure across strategies. This is
because the number of cases itself varies across strategies. Also, whereas we fix the 𝑋, 𝑌
pattern for the purposes of case-selection, here we allow the 𝑋, 𝑌 patterns we discover
to vary across each simulation draw.

5. Data probabilities. As for case-selection, we use the model and prior data to calculate
the probability of each data possibility under each strategy.

6. Inference. Again, as for case-selection, we update the model using each possible data
pattern to derive a posterior distribution.
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7. Expected posterior variance. We then average the posterior variances across the
possible data patterns under a given strategy, weighted by the probability of each data
pattern.

14.2.2 Simulation Results

We now explore alternative mixes of going wide and going deep for a range of models and
queries, the same set that we examined for case-selection in Chapter 13. We present the
results in a compact form in Figure 14.2. The macro-structure of the figure is the same as
that of Figure 13.2 in Chapter 13, with models being crossed with queries. Again, we focus on
the reduction in expected posterior variance. To help with scaling, we plot the reduction in
expected posterior variance relative to the expected posterior variance for the least deep and
least wide strategy under consideration.

Within each panel, each line represents going wide to a differing degree: collecting 𝑋, 𝑌 data
for 𝑁 = 100, for 𝑁 = 400, and for 𝑁 = 1600. We show results for a strategy with no process-
tracing, for process tracing 50 of the 𝑋, 𝑌 cases, and for process-tracing 100 of the 𝑋, 𝑌 cases.
On the 𝑦−axis of each graph, we plot the reduction in expected posterior variance from each
wide-deep combination, relative to the a strategy with 𝑁 = 100 and no process tracing.1

Looking at the figure as a whole, one pattern that leaps out is that there are gains from going
wider for almost all model-query combinations. For some designs (the confounded model being
a notable exception), we achieve close to a full reduction in posterior variance for the 𝐴𝑇 𝐸 as
we go to 1600 𝑋, 𝑌 cases. We can also see, unsurprisingly, that the marginal gains to going
wide are diminishing.

There are, however, some situations in which going wider appears to add little or nothing.
One of these is where we want to estimate the probability that a positive effect runs through
the indirect path in a two path model. For this query and model, we learn significantly from
gathering more within-case information, but little from observing 𝑋 and 𝑌 in a wider set of
cases (see the two rightmost boxes in the bottom row).

Focusing just on the gains to depth, we see that these are more concentrated in specific
model-query combinations. Going deep to learn about the 𝐴𝑇 𝐸 appears at best marginally
advantageous—at least up to process-tracing 100 cases—for the unrestricted moderator models
and for the two-path models. Gains are also modest for these the probability of positive or
negative causation under these models.

On the other hand, we learn more from going deep, in both the unrestricted and monotonic
chain models, and the confounded models (of course, except when the query is the probability

1Note that the expected posterior variance is always 0 for queries that are already answered with certainty by
the model itself, such as the probability of a negative effect in a model with negative effects excluded, and
so the reduction in expected posterior variance is not defined. Note also that in this figure we exclude the
0.5% of observations with the highest variance in each set because of extreme skew in the distribution of
variance estimates. This smooths the figures somewhat but does not affect substantive conclusions.
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that 𝑋 = 0 caused 𝑌 = 1 in a monotonic model, where the model itself answers the query).
And we learn from going deep for the query that the effect of 𝑋 runs through 𝑀 in the two
path model. As we saw with going wide, the marginal gains from going deep are diminishing.

In general, learning from going deep is stronger in the restricted models, but it is not limited
to these. Thus, we don’t need a built in probative value; rather, we learn about 𝑀 ’s probative
value (as discussed in Chapters Chapter 9 and Chapter 10) from the data.

Perhaps the most striking feature is the limited learning in the two-path model. Here, as with
the moderator model, but unlike the confounded model, the ATE is identified without process
data. But we do not see the gains from learning about 𝑀 that we see in the chain model. In
a two-path model, observing 𝑀 correlated with 𝑋 and with 𝑌 across a set of cases should
allow us to learn about 𝑀 ’s informativeness about the operation of an indirect effect, just as
we can learn about 𝑀 ’s probative value in a chain model. The problem is that knowing about
the indirect effect in a two-path model contributes only marginally to the first three queries
in the figure since these are about total effects. Thus, even adding monotonicity restrictions,
which makes 𝑀 a priori informative, does not significantly improve learning from 𝑀 about
total effects.

The important exception, when it comes to learning about the two-path model, is when it is
the pathway itself that we seek to learn about. As we can see in the figure, we can learn a great
deal about whether effects operate via 𝑀 by observing 𝑀 , even in an unrestricted two-path
model. Interestingly, the gains from depth for causal-effect queries in an unrestricted chain
model closely resemble the gains from depth for the indirect-effect query in the unrestricted
two-path model. This similarity suggests that both kinds of model-query combinations allow
for learning about 𝑀 that, in turn, permits learning from 𝑀 .

We also see that the context in which depth delivers the steepest gains of all is when we seek
to learn about the probability of an indirect-effect in a monotonic two-path model. Part of the
reason is likely that 𝑀 is a priori informative about the operation of the mediated pathway
(as it is about the operation of effects in the monotonic chain model). Additionally, however,
it appears that we start out with relatively high uncertainty about the pathway query because
the model itself is quite uninformative about it. Thus, for instance, we learn much more from
depth here than we do for a total effect query in a monotonic chain model: The monotonicity
assumptions themselves already tell us a great deal about total effects, whereas they imply
nothing about the path through which effects unfold. There is simply more to be learned from
𝑀 about pathways than about total effects.

Most interesting, perhaps, is using the graphs to examine different wide versus deep tradeoffs
we might face. Suppose, for instance, that we wish to learn about the probability that 𝑋
caused 𝑌 in an unrestricted confounded model. We start out with 𝑋, 𝑌 data for 100 cases
and have additional resources with which to collect more data. Let us further assume that the
cost of collecting 𝑋, 𝑌 data for an additional 300 cases is equal to the cost of collecting 𝑀 on
50 of the original 100 cases. Where should we invest?
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We can read a fairly clear answer off the graph. As we can see in the relevant graph, we can
expect to do better by adding depth than by adding breadth. In fact, even expanding our
𝑋, 𝑌 sample to 1600 cases only gets us about as much leverage as we get from process-tracing
50 cases.

We can also see how the optimal choice depends on what data-collection we have already done
or committed to. For the same example, imagine we do indeed commit to gathering data on
𝑀 for 50 cases and then get additional resources. We would then expect to be much better by
investing in an expansion to 300 𝑋, 𝑌 cases than by process-tracing the other 50 𝑋, 𝑌 cases.

The chain models, both unrestricted and monotonic, also show clearly how expected learning
from one strategy depends on how much of the other strategy we have already exploited. We
can see for both the 𝐴𝑇 𝐸 and the probability of positive causation that the gains to depth are
much greater if we have done less process tracing. Similarly, the gains from depth are much
greater at lower numbers of 𝑋, 𝑌 cases.

A further question we can ask is: Where are mixing methods advantageous? And when
are maximally wide or maximally deep strategies best? We can examine this question by
comparing a strategy with maximal breadth and no process tracing; a strategy with maximal
process-tracing and minimal breadth; and a strategy in which we invest in a mixture of new
data, by examining 𝑋, 𝑌 in 400 cases while process-tracing 50 cases.

We see some places where we are best off going as wide as possible, at least for the ranges we
explore in these simulations. For instance, if we wish to estimate the 𝐴𝑇 𝐸 in a chain model
(unrestricted or monotonic), a pure “going wide” strategy is optimal. At the other extreme,
when we seek to learn about the probability of an indirect effect from an unrestricted two-path
model, we are best off process-tracing our original 100 cases and gain nothing by expanding
our sample.

In many contexts, however, the mixing strategy performs best. The advantage of mixing
appears starkest for the confounded monotonic model. Suppose we start with only 𝑋 and
𝑌 data for 100 cases under this model. If we can collect more data, how should we do so?
A mixed strategy of expanding to 400 𝑋, 𝑌 cases and process-tracing 50 of them does much
better than either a purely extensive strategy of analyzing 𝑋, 𝑌 in 1600 cases or a purely
intensive strategy of process-tracing all 100 cases, both for estimating both the 𝐴𝑇 𝐸 and the
probability of positive causation.

14.3 Factoring in the Cost of Data

We can also use these results to think through optimal allocations of resources with varying
prices for breadth and depth. To illustrate, consider the unrestricted chain model, where we
see similar expected posterior variance for the probability of positive causation query from the
following three combinations of wide and deep (first column, third row in Figure 14.2):
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1. Maximally wide: 1600 wide + 0 deep
2. Maximally deep: 100 wide + 100 deep
3. Mixed: 400 wide + 50 deep

Which strategy is optimal will depend on the relative cost of collecting 𝑋, 𝑌 data for a new
case (which we normalize to a cost of 1) and collecting 𝑀 for an existing case (at cost 𝑑 per
observation).

For this model-query combination, the widest strategy is better than the deepest strategy if
and only if 1600 < 100 + 100𝑑, that is, when 𝑑 > 15. The mixed strategy is better than the
maximally deep strategy if and only if 400 + 50𝑑 < 100 + 100𝑑, that is when 𝑑 > 6. And the
maximally wide strategy is better than the mixed strategy if and only if 1600 < 400 + 50𝑑, or
𝑑 > 24. Thus, roughly speaking, if 𝑑 < 6, then our ordering is deepest > mixed > widest, if
6 < 𝑑 < 15, our ordering is mixed > deepest > widest; if 15 < 𝑑 < 24, our ordering is mixed >
widest > deepest, and if 𝑑 > 24, our preference-ordering is widest > mixed > deepest. We can,
thus, see that the mixed strategy is optimal across a broad range of 𝑑, though for sufficiently
cheap or expensive within case data gathering, it may be optimal to go purely wide or purely
deep.

14.4 Conclusion

As we found in our analysis of case-selection in Chapter 13, the merits of different combinations
of breadth and depth depend on the query we are trying to answer and the model we are
working with. And as for case-selection, the approach that we propose to make the wide-
versus-deep tradeoff is one that can take account of both the expected learning and the costs
of different options. Specifying these can be important for determining the optimal strategy.

While the scope for general rules of thumb is limited, one striking pattern is that we tend
to see, across simulations, is diminishing marginal returns to both going wider and going
deeper. This suggests that optimal strategies will likely involve some level of mixing of the two
approaches. There are, however, certain extreme situations in which optimal strategies involve
either maximizing going wide or maximizing going deep. A striking example is the two-path
model (with possibly direct effects of 𝑋 on 𝑌 and effects passing through 𝑀). For the simple
ATE, the gains under this model all arise from going wide; whereas ,for determining whether
effects passed through 𝑀 , all the gains arise from going deep. Again, the main lesson remains
the same: The benefits of any given research design will depend on what kind of question we
are posing to what kind of model.
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Part V

IV Models in Question
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15 Justifying Models

Chapter summary

We outline strategies for justifying models on the basis of prior data and thus empirically
grounding beliefs about the probative value of clues.

The approaches to inference that we have described always involve updating beliefs given data
and a model. So to get going, you need to start with a model of some form.

We see two broad responses to this problem.

One is to emphasize the model-contingent nature of claims. Some causal models might rea-
sonably reflect actual beliefs about the world—for example, one might be convinced that
treatment was randomly assigned, that there is no interference, and that units are indepen-
dently sampled. All of these beliefs may be unwise, of course. But if held, then a simple model
such as that represented by an 𝑋 → 𝑌 DAG is more a representation of beliefs about a simple
process in the world than a model of the world, in the sense of a simplified representation.1
Recognizing that we are generally dealing with models that we do not really believe results
in a reposing of the question: The question becomes not whether the assumptions are correct
but whether the model is useful for some purpose (Clarke and Primo 2012). The next chapter
expands upon this idea.

A second approach is to seek to justify a model empirically. We describe such approaches to
empirical model justification in this chapter. We take up the problem in two steps. First, we
focus on process tracing and ask whether and when, given a causal structure, we can empirically
derive the probative value of clues. Second, we briefly summarize an approach to discovering
causal structures, the key input for both process tracing and mixed-method inference.

15.1 Justifying probative value

The problem of justifying assumptions is acute for case-level process-tracing inferences, for two
reasons. First, the beliefs that come into play in generating probative value for our clues are
beliefs over the distribution of individual-level effects, not just beliefs over average effects. We

1Even in this simple case there are ways in which the representation is a model, not least the coding of events
as a variable involves a form of modeling.
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need beliefs, for instance, about the probability of seeing some clue, 𝐾, in a given case if 𝑋 = 1
causes 𝑌 = 1 in the case. This puts us up against the fundamental problem of causal inference
(Holland 1986). Second, in single-case inference, we have limited opportunity to learn about
our model from the case at hand; so the beliefs we go in with are critical. Indeed for case-level
queries, inferences might be little more than conditional applications of a model.2

The question we pursue in this chapter is whether and under what conditions we can empirically
justify those beliefs that yield probative value for our clues.3

15.1.1 Nothing from Nothing

We start with a discouraging result. Many of the models we have looked at—especially for
process tracing—include a good deal of structure. Assumptions might include:

• conditional-independence assumptions
• assumptions of no confounding
• monotonicity assumptions or other restrictions such as no interactions

What happens if we make none of these assumptions? One way to think about this question is:
Can we start with a DAG that makes none of these assumptions and then use observational
data—that is, learn from those data—to render clues informative about causal effects?

Suppose that we would like to be able to learn from a candidate clue, a node 𝑀 that is possibly a
mediator or perhaps a moderator in the sense that it is realized after some explanatory variable
𝑋 and before some outcome variable 𝑌 . We work through this problem under favorable
conditions, a world in which in fact (though unknown ex ante to the researcher):

• 𝑋 causes 𝑌 through 𝑀
• 𝑋 is a necessary condition for 𝑀 , and 𝑀 is a sufficient condition for 𝑌 —and so 𝑌 is

monotonic in 𝑋 and
• there is no confounding

We also assume that we have access to large amounts of observational data on 𝑋, 𝑀 , and
𝑌 .

We work through inferences for two types of models in which 𝑋 can have both indirect and
direct effects on 𝑌 (Figure 15.1). We impose no restrictions on nodal types in either model.
Even though there are only three nodes, Model 1 has 128 causal types (2 × 4 × 16). In
addition:

2Though it is certainly possible to learn from a single case that the model itself is wrong—for example, if
events are observed that are assigned 0 probability under a model.

3The question was already addressed in Cahpters Chapter 9 and Chapter 10; here, we gather together some
particularly sharp positive and negative results.
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• In Model 1 we allow confounding between all pairs of nodes. This results in 127 free
parameters.

• In Model 2 we assume that 𝑋 is known to be (“as if”) randomized, but we still allow for
confounding between 𝑀 and 𝑌 . There are now only 64 free parameters.

M

X

Y

X not known to be randomized

M

X

Y

X known to be randomized

Figure 15.1: Two models. The model on the right might be justified if 𝑋 is known to be
randomized.

We generate data from the true model and then update Model 1 and Model 2. Then we
query the models to see how case-level inferences depend on (M). The results are shown in
Figure 15.2. The query of interest is whether 𝑋 caused 𝑌 in an 𝑋 = 1, 𝑌 = 1 case. We can
inspect the figure to determine whether 𝑀 is now informative about this query under trained
versions of Model 1 and Model 2.

We find that even with an auspicious monotonic data-generating process in which 𝑀 is a
total mediator, 𝑀 gives no traction on causal inference under Model 1—our beliefs have wide
variance and are essentially unresponsive to 𝑀 (in addition, updating on this model can cause
computational errors). In contrast, when 𝑋 is known to be randomized, as in Model 2, we
have tight posteriors, and 𝑀 gives considerable leverage. If we observe 𝑀 = 0, we would
downgrade confidence that 𝑋 caused 𝑌 .

This example nicely illustrates the Cartwright (1989)’s idea of “no causes in, no causes out.”
We also think it poses a challenge to any process-tracing exercise that aspires to model-
independence: observational data alone are not sufficient to generate a justification for process-
tracing inferences for three-node problems even when in reality causal structures are simple.
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Figure 15.2: Can updating our models on large 𝑁 data render 𝑀 informative? Model 1: No
knowledge of structure; Model 2: 𝑋 known to be randomized. Error bars show
95% credibility intervals

15.1.2 Justifying the Classic Process-Tracing Tests

Now, on a more encouraging note, we show the possibility of justification of each of the four
classical “qualitative tests” described by Collier (2011) and drawing on Van Evera (1997), at
least when treatment assignment is as-if randomized.

Recall that the four tests are “smoking gun” tests, “hoop” tests, “doubly-decisive” tests, and
“straw-in-the-wind” tests.A hoop test is one which, if failed, bodes especially badly for a
claim; a smoking gun test is one that bodes especially well for a hypothesis if passed; a
doubly-decisive test is strongly conclusive no matter what is found; and a straw-in-the-wind
test is suggestive, though not conclusive, either way. Of course, Bayesian inference involves
continuous probabilities, not discrete test categories, but we speak to these categories for
heuristic purposes.

The key point is that probative value for case-level inference can be derived from data in
which randomization of a causal variable can be assumed. Deriving probative value from data
contrasts with approaches in which researchers are meant to have more or less direct knowledge
of the priors and likelihoods.

In Humphreys and Jacobs (2015), for instance, formalization involves specifying (a) a prior
that a hypothesis is true and, independently of that (b) a set of beliefs about the probability of
seeing a given data pattern if the hypothesis is true and if it is false. Updating then proceeds
using Bayes’ rule. However, this simple approach suffers from two related weaknesses. First,
there is no good reason to expect these probabilities to be independent. Our prior beliefs about
the hypotheses constitute beliefs about how the world works, and beliefs about how the world
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works should have implications for the conditions under which clues are likely to be observed.
Second, there is nothing in the setup to indicate how beliefs about the probative value of clues
should be established or justified.

Both of these problems are resolvable in the context of inference from fully specified causal
models. We illustrate first by using an idealized example to show that a case-level “doubly-
decisive” test can be justified by population-level data from factorial experimental designs (see
also our discussion in Chapter 5); we then generalize to all four tests.

Suppose that we have observed experimental data on just 𝑋 and 𝑌 across a large set of cases,
allowing us to infer that Pr(𝑌 = 1|𝑋 = 1) = Pr(𝑌 = 1|𝑋 = 0) = .5. Here, we have an average
treatment effect of 0. But suppose, further, that our query is whether 𝑋 = 1 caused 𝑌 = 1 in
a particular case with 𝑋 = 1, 𝑌 = 1. The marginal distributions we have observed so far are
consistent with a world in which 𝑋 never affects 𝑌 . But less obviously, they are also consistent
with a world in which 𝑋 always affects 𝑌 (sometimes negatively, sometimes positively). And
they are also consistent with many possibilities in between these extremes.

Now let’s say that we have lots of data on a third variable, 𝐾, and find (a) that 𝐾 = 1 arises
with 50% probability and (b) that the marginal distributions of 𝑌 given 𝑋 and 𝐾 are as
follows:

• Pr(𝑌 = 1|𝑋 = 0, 𝐾 = 0) = 1
• Pr(𝑌 = 1|𝑋 = 1, 𝐾 = 0) = .5
• Pr(𝑌 = 1|𝑋 = 0, 𝐾 = 1) = 0
• Pr(𝑌 = 1|𝑋 = 1, 𝐾 = 1) = .5

We thus see that, in cases in which 𝐾 = 1, 𝑋 = 1 is a necessary condition for 𝑌 = 1. So if
𝐾 = 1, then 𝑋 = 1 certainly caused 𝑌 = 1 (since, in that case, were 𝑋 zero, then 𝑌 would
certainly be 0). On the other hand, were 𝐾 = 0, then 𝑋 = 0 would be a sufficient condition
for 𝑌 = 1, which means that in this case, 𝑋 = 1 most certainly did not cause 𝑌 = 1. We have
then that, if 𝐾 = 1, then certainly 𝑋 = 1 caused 𝑌 = 1, whereas if 𝐾 = 0, then certainly
𝑋 = 1 did not cause 𝑌 = 1.

This example demonstrates it is, in principle, possible to justify a doubly decisive test on the
basis of experimental data—provided that the case about which we seek to make inferences
can be considered exchangeable with (that is, we have no reason to think it works differently
from) the cases in the experimental data.

Table 15.1 shows how this logic generalizes to different types of tests. For each test, we first
show the inferences from the data available to us (first five rows); we then show the inferences
on whether 𝑋 = 1 causes 𝑌 = 1 in cases where 𝑋 = 1 and 𝑌 = 1 as a function of 𝐾.

Note that some entries in Table 15.1 appear as ranges. This reflects the fact that, unless we
are at edge cases, the estimand here is not identified even with infinite experimental data. In
practice, we expect never to be at these edges. However, despite not being identified, bounds
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Table 15.1: Known probabilities from a model with 𝑋 → 𝑌 ← 𝐾 justifying classic test types
for clue 𝐾 given 𝑋 = 𝑌 = 1.

Doubly decisive Hoop Smoking gun Straw in the wind
Pr(𝐾 = 1) 1

2
9

10
1

10
1
2

Pr(𝑌 = 1|𝑋 = 0, 𝐾 = 0) 1 1 1
3

1
2

Pr(𝑌 = 1|𝑋 = 1, 𝐾 = 0) 1
2

1
2

2
3

3
4

Pr(𝑌 = 1|𝑋 = 0, 𝐾 = 1) 0 1
3 0 1

4
Pr(𝑌 = 1|𝑋 = 1, 𝐾 = 1) 1

2
2
3

1
2

3
4

Pr(𝑋 causes 𝑌 |𝐾 = 0) 0 0 [1
2 , 1] [1

3 , 2
3 ]

Pr(𝑋 causes 𝑌 |𝐾 = 1) 1 [1
2 , 1] 1 [2

3 , 1]

can be placed on causal quantities. For instance, for the hoop test, when 𝐾 = 1, the bounds
are [.5, 1]. The reason that the probability of causation here cannot be less than 0.5 is that:

1. We can see from the distribution of 𝑌 given 𝑋 when 𝐾 = 1 that 𝑋 has a positive effect
on 𝑌 at least one third of the time (the average effect is one third, and so there is a
positive effect for at least one third of units; indeed, it is possible that there is a positive
effect for 2/3 of units and a negative effect for the remaining 1/3).

2. We can see that in two thirds of cases 𝑌 = 1 when 𝑋 = 1, 𝐾 = 1
3. So at least half of these cases in which 𝑌 = 1 when 𝑋 = 1, 𝐾 = 1 are cases for which

𝑌 = 1 because 𝑋 = 1.

In these examples, the fact that queries are not point-identified with infinite data does not
detract from the fact that 𝐾 is informative in the ways associated with the different types of
tests.

So much for infinite data. Is it possible to justify classic tests with inferences on finite data
starting with flat priors? Using the procedures given in Chapter 9, the results in Table 15.2
show that it is. For these results, we imagine four different data generating 𝑋 → 𝑌 ← 𝐾
models. The models vary in the amount of weight they accord to three different nodal types
for 𝑌 —as well as in 𝜆𝐾. We then simulate 1,000 observations from each model and update an
agnostic 𝑋 → 𝑌 ← 𝐾 model.

In particular, for the doubly-decisive test, we generate the data from a model in which all units
have nodal type 𝜃𝑌 = 𝜃𝑌

0001, and so the presence of 𝐾 is necessary and sufficient to render 𝑋
causal for 𝑌 . For hoop tests, we generate data from a model in which there are also 𝜃𝑌

0101 nodal
types: that is, cases in which 𝐾 matters but 𝑋 does not. Given these cases, observation of
𝐾 = 0 guarantees that 𝑋 does not matter, but observation of 𝐾 = 1 does not guarantee that
𝑋 does matter. To generate smoking gun tests, our data-generating model has a distribution
over 𝜃𝑌

0001 and 𝜃𝑌
0011 types—in which 𝑋 always matters when 𝐾 = 1 but might not matter

when 𝑋 = 0. For straw-in-the-wind tests, we imagine a distribution over all three types.
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Table 15.2: Classic tests with probative value inferred from (simulated) data, for query, Does
𝑋 have a positive effect on 𝑌 in this case (given 𝐾)?

Given Straw in the wind Hoop Smoking gun Doubly Decisive
- 0.493 0.455 0.555 0.484

K=0 0.286 0.041 0.518 0.009
K=1 0.697 0.496 0.895 0.976

In Table 15.2, we show the inferences we would now draw from observing 𝐾 = 1 versus 𝐾 = 0
in a single case, based on updating a model that has no restrictions and flat priors over all nodal
types. The query is whether 𝑋 has a positive effect on 𝑌 in a given case. Each column-labeled
with the classic test names- represents our beliefs about 𝐾’s probative value as derived from
data generated by the four models we described above. These indeed conform to expectations.
In the “hoop test” column, we see that (having updated based on data from one of the four
data-generating models), we have formed beliefs such that observing 𝐾 = 1 in a case slightly
boosts our confidence that 𝑋 has a positive effect on 𝑌 , while observing 𝐾 = 0 dramatically
undermines our confidence in such an effect. In the smoking gun column, we see that (having
updated based on data from another one of the four data-generating models) we have formed
beliefs such that observing 𝐾 = 1 in a case greatly boosts our confidence that 𝑋 has a positive
effect on 𝑌 , while observing 𝐾 = 0 slightly undermines our confidence in such an effect.

We underline that we have here derived the probative value of the clue from observed data
and a model that was entirely agnostic about the clue’s probative value (but which did assume
some priors on causal types). In particular, the model that we start with has no restrictions
on 𝑌 ’s nodal types, has flat beliefs over the distribution of 𝐾, and imposes no assumption
that 𝐾 is informative for how 𝑌 responds to 𝑋. It does, however, assume that 𝑋 and 𝐾 are
unconfounded root nodes, as might be the case if these were experimentally manipulated.

For both of these examples, we have focused on moderators as clues. For results on mediators as
clues, see P. Dawid, Humphreys, and Musio (2019), which establishes that mediators in chain
models can produce hoop tests but are generally unable to generate smoking gun tests.

This approach to thinking about process tracing tests is quite different from that described in
existing (including Bayesian) treatments such as Collier (2011), Bennett (2015), Fairfield and
Charman (2017), or Humphreys and Jacobs (2015). Rather than having a belief about the
probative value of a clue, and a prior over a hypothesis, inferences are drawn directly from
a causal model that embeds a clue in a network of possible causal effects. Critically, with
this approach, the inferences made from observing clues can be justified by referencing a more
fundamental, relatively agnostic model, that has been updated in light of data. The updated
model yields a prior over the proposition, beliefs about probative values, and guidance for
what conclusions to draw given knowledge of 𝐾.
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15.2 Empirical Discovery of Causal Structure

In the preceding discussion of learning about probative value for process tracing, we have
taken causal structure—the DAG itself—as given. Moreover, even when we are engaged in
mixed-data inference on multiple cases—where we can start with only the DAG—we still need
to start with some causal structure. Where does knowledge of causal structure come from?

One approach is to treat causal structure as just one more level in our multi-tiered hierarchy
of models. We can entertain multiple models and specify priors over the causal structure.
One could, for instance, have beliefs over two causal models that are mutually incompatible
because arrows between two nodes point in opposite directions. In this case, uncertainty
reflects uncertainty over models but learning involves not just updating model parameters but
also updating over model structure.

This is a perfectly coherent approach but given the complexity of inferences conditional on
a causal structure, we do not pursue this strategy further here. Instead, we briefly describe
approaches to “causal discovery”—strategies to derive causal structures from data.

The empirical discovery of causal structure is a very large field of inquiry, and we cannot do
it justice here. For a review, see Glymour, Zhang, and Spirtes (2019).

We seek, rather, to illustrate the possibility of causal discovery.

To do so,We demonstrate three situations in which there is a true—but unknown model—
relating 𝑋, 𝑀, and 𝑌 to each other. Critically, we assume that there are no unobserved
confounding relations (this is a requirement for the “PC” algorithm but not for the “Fast
Causal Inference” algorithm). In each situation, we show the true relationship and the “skele-
ton” of the model as discovered by a prominent technique that uses a “constraint-based
algorithm”—examining whether observed data correlations are consistent with one or another
set of conditional-independence relations.

In Figure 15.3, we represent the true models from which simulated data are generated. The
objective is then to see how much of this true causal structure the discovery algorithm can
recover from the data. In the first true model, 𝑋 affects 𝑌 directly and indirectly through 𝑀 .
In the second model, 𝑌 has two causes that do not influence each other. Finally, in the third
model, 𝑋 causes 𝑌 through 𝑀 but not directly. When we simulate data from these models,
we assume monotonicity but otherwise a flat distribution over nodal types. As noted, we We
also assume no confounding: There is nothing not represented on the graph that affects more
than one node.

In Figure 15.4, we show the structures that we recover. In all situations, we correctly recover
the skeleton: which nodes are connected to which nodes. Note that, for any link where we
have an “o” on both ends of the link, we do not know in which direction causal effects flow.

In the first situation, the skeleton is unrestricted: We have correctly not excluded links between
any two nodes, but we have not learned about the directions of effects. In the second situation,
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Figure 15.3: DAGs from three structural causal models.
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Figure 15.4: (Partially) recovered DAGs from data. Circles indicate uncertainty regarding
whether an arrow starts or ends at a given point.
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however, we have fully recovered the causal structure. Thus, the algorithm has figured out
that 𝑋1 and 𝑋2 are not children of 𝑌 . The algorithm sees, in essence, data patterns that
are distinctively associated with colliders: 𝑋1 and 𝑋2 correlated conditional on 𝑌 but not
otherwise. In the last setup, we have not figured out the direction of the causal arrows, but
the inference is still rather impressive. Although 𝑋, 𝑀 , and 𝑌 are all correlated with each
other, the algorithm has figured out that there should be no direct link between 𝑋 and 𝑌 —by
observing that 𝑋 and 𝑀 are not correlated with each other conditional on 𝑀 .

Note also that, in all three situations, if we have access to all relevant variables, the true graph
can be recovered with additional knowledge of the temporal ordering of the variables.

The assumption that we have captured all nodes that might generate confounding is critical
to these results. Yet these examples provide grounds for hope that causal models can be
discovered and not simply assumed. If all relevant nodes are known and measured—a tall
order for sure—causal structures can be identified from data.

We have shown that the models used for both process tracing and mixed-methods inference
can be constructed from weaker models. This provides some defense against concerns that
these approaches require assuming models that cannot be justified. In both cases, however, we
also see that justification is not easy, sometimes not possible, and itself requires assumptions,
albeit weaker ones.
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16 Evaluating Models

Chapter summary

We describe strategies for figuring out whether a model is likely doing more harm than
good and for comparing the performance of different models to one another.

Throughout this book, we have maintained the conceit that you believe your model. But
it is also obvious that even the most nonparametric-seeming models depend on substantive
assumptions and that these are almost certainly wrong. The question then is not how much
you believe your model (or whether you really believe what you say you believe) but whether
your model is useful in some sense. How can we evaluate the usefulness of our models?

16.1 Four Strategies

In this chapter, we will describe four strategies and show them at work for a running example
in which we know a model poorly captures an assumed causal process. We will then use turn
the four strategies loose on the two models that we examined in Chapters Chapter 8 and
Chapter 10.

Here’s our running example. Imagine a true causal process involving 𝑋, 𝑀 , and 𝑌 . Say that 𝑋
affects 𝑌 directly, 𝑀 never has a negative effect on 𝑌 , and 𝑋 has no effect on 𝑀 (and so there
is no indirect effect of 𝑋 on 𝑌 via 𝑀). But imagine that researchers wrongly suppose that
the effect of 𝑋 on 𝑌 runs entirely through 𝑀 , positing a model of the form 𝑋 → 𝑀 → 𝑌 .

The problem with the posited model, then, is that it represents overly strong beliefs about
independence relations: It does not allow for a direct effect that is in fact operating.

We are perfectly able to update using this too-strong 𝑋 → 𝑀 → 𝑌 model and data—but the
updated model can produce wildly misleading causal inferences. We show this using a set of
200 observations simulated from a model that has direct effects only and an average effect of
𝑋 on 𝑌 of 1/3.

In the left panel of Figure 16.1, we show the estimated average treatment effect of 𝑋 on 𝑌 when
using these data to update the 𝑋 → 𝑀 → 𝑌 model. In the right panel, we show the inferences
we would make using the same data but using a model that makes weaker assumptions by
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allowing for direct effects: An 𝑋 → 𝑀 → 𝑌 ← 𝑋 model. With both models, we start with
flat priors over nodal types.

We represent the (stipulated) true average effect with the vertical line in each graph.

As we can see, the weaker (i.e., more permissive) model performs alright: The true effect falls
within the posterior distribution on the ATE. However, the stronger model, which excludes
direct effects, generates a tight posterior distribution that essentially excludes the right answer.
So, if we go into the analysis with the stronger model, we have a problem.

But can we know we have a problem?

In the remainder of this section, we explore a range of diagnostics that researchers can un-
dertake to evaluate the usefulness of their models or to compare models with one another:
Checking assumptions of conditional independence built into a model; checking the model’s
fit; using “leave-one-out” cross-validation; and assessing model sensitivity.
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Figure 16.1: A restricted model yields a credibility interval that does not contain the actual
average effect.

16.1.1 Check Conditional Independence

First, even before engaging in updating, we can look to see whether the data we have are
consistent with the causal model we postulate. In particular, we can check whether there are
inconsistencies with the Markov condition that we introduced in Chapter 2: That every node
is conditionally independent of its nondescendants, given its parents.

In this case, if the stronger model is right, then given 𝑀 , 𝑌 should be independent of 𝑋.

Is it?

One way to check is to assess the covariance of 𝑋 and 𝑌 given 𝑀 in the data. Specifically,
we regress 𝑌 on 𝑋 for each value of 𝑀 , once for 𝑀 = 1 and again for 𝑀 = 0; a correlation
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Table 16.1: Regression coefficient on 𝑋 given 𝑀 = 0 and 𝑀 = 1

M estimate std.error p.value
0 0.345 0.093 0.000
1 0.341 0.096 0.001

between 𝑋 and 𝑌 at either value of 𝑀 would be problematic for the conditional independence
assumption embedded in the stronger model.

Note that this form of diagnostic test is a classical one in the frequentist sense: We start by
hypothesizing that our model is correct and then ask whether the data were unlikely given the
model.

We report the regression coefficients on 𝑋 in Table 16.1. It is immediately apparent that we
have a problem. At both values of 𝑀 , and especially when 𝑀 = 0, there is a strong correlation
between 𝑋 and 𝑌 , evidence of a violation of the Markov condition implied by the stronger
model.1

Identifying the full set of conditional independence assumptions in a causal model can be
difficult. There are however well developed algorithms for identifying what sets, if any, we
need to condition on to ensure conditional independence between two nodes given a DAG.2

16.1.2 Bayesian p-Value: Are the Data Unexpected Given Your Model?

A second—though clearly related–approach asks whether features of the data we observe are in
some sense unusual given our updated model, or more unusual given our model than another
model. For instance, if one model assumed no adverse effects of 𝑋 on 𝑌 and no confounding,
then a strong negative correlation between 𝑋 and 𝑌 would be unusual, even for the model
updated with this data; and this negative correlation would be more unusual for this model
than for a model that allowed for adverse effects.

This approach is also quite classical: We are looking to see whether we should “reject” our
model in light of inconsistencies between the data we have and the data we expect to see
given our updated model. The idea is not to figure out whether the model is false—we know
it is—but whether it is unacceptably inconsistent with data patterns in the world (Gelman
2013).

1In applying the Markov condition, we also need to take into account any unobserved confounding. For
instance, suppose that there was an unobserved confounder of the relationship between 𝑀 and 𝑌 in the
𝑋 → 𝑀 → 𝑌 model. Then we would not expect 𝑌 to be independent of 𝑋 conditional on 𝑀. In this case
𝑀 acts as a collider between 𝑋 and another unobserved cause of 𝑌 ; so conditioning on 𝑀 introduces a
correlation between 𝑋 and this unobserved cause, and thus between 𝑋 and 𝑌 .

2R users can quickly access such results using the impliedConditionalIndependencies function in the dagitty
package.
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Figure 16.2: Bayesian 𝑝 values are not calibrated.

An approach for doing this using simulated data from the posterior predictive distribution is
described in Gabry et al. (2019).3 The basic procedure we employ here is to:

1. Draw a parameter vector from the posterior.
2. Draw data using the parameter vector.
3. Calculate a test statistic using these data.
4. Repeat 1 - 3 to build up a distribution of test statistics.
5. Calculate the same test statistic using the real data (the observed statistic).
6. Assess how extreme the observed statistic is relative to the distribution of statistics

generated from the posterior (e.g. the probability of getting a test statistic as large or
larger than the observed statistic).

Note that in this straightforward calculation we assess the probability of the data given the
same model that generated the data; approaches could also be used that seek out-of-sample
estimates of the probability of observing the observed data.

We note that the 𝑝 values generated in this way are not necessarily “calibrated” in the sense
that given a true vector 𝜃, the distribution of the 𝑝 value is not uniform (Bayarri and Berger
2000).4 It nevertheless gives an indication of whether the data are unusual given our model.
As an illustration, imagine a simple 𝑋 → 𝑌 model and imagine that in truth the effect of 𝑋
on 𝑌 were 1. Say we observe 𝑁 cases in which 𝑋 and 𝑌 are indeed perfectly correlated; we
update our model and then draw data from this updated model. What are the chances that
the data we draw would also be perfectly correlated, like the data we put into the model? In
fact, surprisingly, the answer is “low,” and, moreover how low depends on 𝑁 .See this result

3Tools in the bayesplot package can be used to show how typical the data we observe is for different models
4A uniform distribution has the property that the probability of getting a value of 𝑝 or less under the model

is 𝑝.
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plotted in Figure 16.2. In other words, the extreme data we see can seem extreme to us—even
after we have updated using the right model and extreme data.

Returning to our running example, we consider two test statistics and compare performance
for the stronger and weaker model (Figure 16.3. First, we look just at the distribution of the
outcome 𝑌 to see how the actual distribution in the data compares to the predicted distribution
from the updated model. Second, we look at the actual correlation between 𝑋 and 𝑌 and see
how this compares to the predicted distribution. In both cases we calculate a two-sided 𝑝-value
by assessing the chances of such an extreme outcome as what we observe. If the observed data
were at the mean of the predictive distribution, then we would have a 𝑝-value of 1. If they were
at the 95th percentile (and the distribution of test statistics under the model were symmetric)
we would have a 𝑝-value of 0.10.
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p = 0

p = 0.41
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Figure 16.3: Bayesian 𝑝-values for different test statistics and models.

For the first test, we see that the predicted distribution of the outcome 𝑌 is similar for both
updated models; and the actual mean outcome is within the distribution of predicted mean
outcomes. The 𝑝-values for the stronger (1) and weaker models (0.87) suggest that the observed
mean 𝑌 value is not unusual for either model. No clues there. This is a fairly “easy” test in
the sense that many models should have little difficulty producing a reasonable distribution
for 𝑌 even if they are problematic in other ways.

When it comes to the correlation between 𝑋 and 𝑌 , however, the two models perform very
differently. The posterior predictive distribution from the stronger model is centered around
a 0 correlation and does not even extend out as far as the observed correlation. The resulting
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𝑝-value is 0, meaning that from the perspective of the stronger model the 𝑋, 𝑌 correlation in
the data is entirely unexpected. A frequentist looking at the observed correlation between 𝑋
and 𝑌 should feel comfortable rejecting the stronger model. The updated weaker model, in
contrast, predicts a strong correlation, and the observed correlation is comfortably within the
posterior predictive distribution, with a 𝑝-value of 0.41.

At first blush, the abysmal performance of the stronger model may seem surprising. Even after
this model has seen the 𝑋, 𝑌 correlations in the data, the model still finds those correlations
highly surprising. The 𝑋 → 𝑀 → 𝑌 model fails to learn, however, because the strong
assumptions on independence do not provide the flexibility it needs to capture the complex
relations between 𝑋, 𝑀 , and 𝑌 . The problem is that 𝑀 is uncorrelated with 𝑋 in the true
data-generating process, so the stronger model learns that there is no indirect effect. But, at
the same time, this model does not allow for a direct effect. Despite what would seem to be
overwhelming evidence of a systematic 𝑋, 𝑌 correlation, a causal relationship connecting 𝑋
to 𝑌 remains extremely unlikely given the 𝑋, 𝑀 data pattern and the impossibility of direct
effects. The stronger model just can’t handle the truth. The weaker model, on the other hand,
readily learns about the direct 𝑋 → 𝑌 effect.

16.1.3 Leave-One-Out Likelihoods

A further class of model-validation methods involves cross-validation. Rather than asking how
well the updated model predicts the data used to update it, cross-validation uses the data
at hand to estimate how well the model is likely to predict new data that have not yet been
seen.

One way to do this is to split the available data, using one subsample to update and then
assessing predictions using the other subsample. We focus here, however, on a “leave-one-
out” (LOO) approach that uses all of the available data to estimate out-of-sample predictive
performance.

In the LOO approach, we update the model using all data points except for one and then ask
how well the model performs in predicting the left-out observation. We repeat this for every
data point in the dataset to assess how well we can predict the entire dataset.

Often, the LOO approach is used to predict a particular outcome variable. We, however, are
interested in predictions over the joint realization of all nodes. Thus, we calculate the posterior
probability of each data point, using the model updated with all of the other observations.

The LOO estimate of out-of-sample predictive fit, for a dataset with 𝑛 observations, is then:

𝑛
∏

1
𝑝(𝑦𝑖|𝑦−𝑖, model)

where 𝑦−𝑖 is the data pattern with observation 𝑦𝑖 left out, and 𝑦𝑖 represents the values of all
nodes of interest for observation 𝑖.
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Figure 16.4: LOO likelihoods for different models
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We implement LOO cross-validation of the stronger and weaker models using 200 observations
generated from the same data-generating model employed above. We find that the LOO
likelihood of the data under the stronger model is 2.12e-183 while the likelihood is 9.01e-179
under the weaker model. Thus, the weaker model represents an estimated improvement in
out-of-sample prediction on the order of 4.24e+045

We can visualize the pattern in Figure 16.4, where we plot the likelihood of each possible
data type under the stronger model against the likelihood of that data type under the weaker
model. The distribution is much more compressed on the horizontal axis than on the vertical
axis indicating how the stronger model is not able to differentiate as much across the data
types as the weaker.

Notably, the stronger model is not able to “learn” from the data about the (in fact, operative)
relationship between 𝑋 and 𝑌 . The positive correlation arises because both models have
“learned” from chance correlations in the data that different values 𝑋, 𝑀 combinations are
differentially likely. The weaker model, however, also succeeds in dividing the data types into
two groups: Those with a positive 𝑋, 𝑌 correlation and those with a negative 𝑋, 𝑌 correlation
and has correctly (given the true model) learned that the former is more likely than the latter.
The stronger model is not successful in separating these sets out in this way.

In Figure 16.6, we then see how the likelihoods of each data type line up with the actual
count of each data type. As we can see, the weaker model updates to likelihoods that fit the
actual data pattern well while the stronger model does not; in particular the stronger model
underpredicts cases that are on the diagonal and over predicts cases that are off it.

We can also turn the tables and imagine that the stronger model represents the true data-
generating process. We implement LOO cross-validation of the two models using 200 data
points generated from the stronger model. In Figure 16.6, we see a comparison of the like-
lihoods of the data types under the two updated models and note that they are extremely
similar. This represents an important asymmetry: The model that makes weaker assump-
tions performs far better in handling data generated by a “stronger” true model than does
the stronger model in learning about a process that violates one of its assumptions. Since
the weaker model allows for both direct and indirect effects, the weaker can learn about the
parameters of the true process in the first situation; but the strong model cannot do so in
the second situation because it has by assumption ruled out a key feature of that process (the
direct effect).

While it is difficult to see this in Figure 16.6, the stronger model performs better here than
the weaker model. The likelihood of the data under the stronger model is now 1.51e-120,
compared to the likelihood of 1.13e-125 under the weaker model. Thus, the weaker model
represents an estimated loss to out-of-sample prediction on the order of 7.46e-06. This is not
surprising insofar as the stronger model precisely models the data-generating process while the
extra parameters in the weaker model allow for “learning” from chance features of the data.

5These numbers (and later numbers) change from simulation to simulation based on the particular data we
draw from the model.
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Figure 16.5: LOO likelihoods and data type counts for the stronger and weaker models
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These examples display features of estimation of out-of-sample prediction accuracy familiar
from a regression context. In a regression framework, adding parameters to a model may
improve fit to sample—generating gains to out-of-sample prediction accuracy when the new
parameters pick up systematic features of the data-generating process—but run a risk of over-
fitting to chance patterns in the data. Similarly, in a causal models framework, for a model
with weaker assumptions and more parameters. We saw that the weaker model performed
much better when the true process involved direct effects since the extra parameters, allowing
for direct effects, captured something “real” going on. But the same model performed slightly
worse than the stronger model when there were no direct effects to pick up, such that the extra
parameter could only model noise.

16.1.4 Sensitivity

The last approach we consider brackets the question of which model is better and asks, in-
stead: How much do your conclusions depend on the model? You can worry less about your
assumptions if the conclusions are not strongly dependent on them.

For the running example we already saw in Figure 16.1 that conclusions can depend dramati-
cally on the model used. This alone is reason to be worried.

To illustrate how to think about sensitivity for a process tracing example, consider a situation
in which we are unsure about posited parameter values: That is, about the probability of
particular effects at particular nodes. It is likely to be the case in many research situations
that we are considerably uncertain about how to quantify intuitive or theoretically informed
beliefs about the relative likelihood of different effects.

Suppose, for instance, that we begin with an 𝑋 → 𝑀 → 𝑌 model. And suppose, further, that
we believe that it is unlikely that 𝑀 has an adverse effect on 𝑌 . But we are not sure how
unlikely that adverse effect is. (We assume all other nodal types are equally likely.) Finally,
say that we want to use the observation of 𝑀 to draw an inference about whether 𝑋 = 1
caused 𝑌 = 1 in an 𝑋 = 𝑌 = 1 case.

How much does our inference regarding 𝑋’s effect on 𝑌 —when we see 𝑀 = 0 or 𝑀 = 1—
depend on this second stage assumption about the probability of a negative 𝑀 → 𝑌 effect?

We answer the question by looking at posterior beliefs for a range of possible values for the
relevant parameter, 𝜆𝑌

10. In Table 16.2, we examine a range of values for 𝜆𝑌
10, from 0 to 0.25

(full parity with other types). For each parameter value, we first show the resulting prior belief
about the probability that 𝑋 = 1 caused 𝑌 = 1. We can see that, before we observe 𝑀 , we
think that a positive 𝑋 → 𝑌 effect is more likely as a negative 𝑀 → 𝑌 effect becomes more
likely. This stands to reason since a negative second-stage effect is one possible process through
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Table 16.2: Inferences on the probability that 𝑋 caused 𝑌 upon seeing 𝑀 = 0 or 𝑀 = 1 for a
range of possible values of 𝜆𝑌

10

𝜆𝑌
10 Prior 𝑀 = 0 𝑀 = 1

0.00 0.167 0.000 0.25
0.05 0.183 0.068 0.25
0.10 0.200 0.125 0.25
0.15 0.217 0.173 0.25
0.20 0.233 0.214 0.25
0.25 0.250 0.250 0.25

which a positive 𝑋 → 𝑌 effect might occur. And higher values for 𝜆𝑌
10 come disproportionately

at the expense of types under which 𝑋 cannot affect 𝑌 .6

In the next two columns, we show the posterior belief we arrive at when we observe 𝑀 = 0
and then 𝑀 = 1, for each 𝜆𝑌

10 assumption. Looking at the last column first, we see that our
inference from 𝑀 = 1 does not depend at all on our beliefs about adverse 𝑀 → 𝑌 effects. The
reason is that, if we see 𝑀 = 1, we already know that 𝑀 did not have a negative effect on
𝑌 , given that we also know 𝑌 = 1. Our beliefs are purely a function of the probability that
there are positive effects at both stages as compared to the probability of other causal types
that could yield 𝑋 = 𝑀 = 𝑌 = 1, a comparison unaffected by the probability of a negative
𝑀 → 𝑌 effect.

Our inferences when 𝑀 = 0, on the other hand, do depend on 𝜆𝑌
10: When we see 𝑀 = 0,

our belief about a positive 𝑋 → 𝑌 effect depends on the likelihood of negative effects at both
stages. We see, then, that the likelier we think negative effects are at the second stage, the
higher our posterior confidence in a positive 𝑋 → 𝑌 effect when we see 𝑀 = 0.

Even though our inferences given 𝑀 = 1 do not depend on 𝜆𝑌
10, the amount that we update

if we see 𝑀 = 1 does depend on 𝜆𝑌
10. This is because 𝜆𝑌

10 affects our belief, prior to seeing
𝑀 , that 𝑋 = 1 caused 𝑌 = 1. Working with a low 𝜆𝑌

10 value, we start out less confident that
𝑋 = 1 caused 𝑌 = 1, and thus our beliefs make a bigger jump if we do see 𝑀 = 1 than if we
had worked with a 𝜆𝑌

10 higher value.

However, to the extent that we want to know how our assumptions affect our conclusions, the
interesting feature of this illustration is that sensitivity depends on what we find. The answer
to our query is sensitive to the 𝜆𝑌

10 assumption if we find 𝑀 = 0, but not if we find 𝑀 = 1. It
is also worth noting that, even if we observe 𝑀 = 0, the sensitivity is limited across the range
of parameter values tested. In particular, for all 𝜆𝑌

10 values below parity (0.25), seeing 𝑀 = 0
moves our beliefs in the same direction.

6Increasing weight on 𝜆𝑌
10 is drawn equally from 𝜆𝑌

00, 𝜆𝑌
11, and 𝜆𝑌

10, with the first two of these three representing
null effects.
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We can use the same basic approach to examine how our conclusions change if we relax
assumptions about nodal-type restrictions, about confounds, or about causal structure.

We also note that, in cases in which we cannot quantify uncertainty about parameters, we
might still be able to engage in a form of “qualitative inference.” There is a literature on prob-
abilistic causal models that assesses the scope for inferences when researchers provide ranges of
plausible values for parameters (perhaps intervals, perhaps only signs, positive, negative, zero),
rather than specifying a probability distribution. For a comprehensive treatment of qualitative
algebras, see Parsons (2001). Under this kind of approach, a researcher might willing to say
that they think some probability 𝑝 is not plausibly greater than .5, but unwilling to make
a statement about their beliefs about where in the 0 to 0.5 range it lies. Such incomplete
statements can be enough to rule out classes of conclusion.

16.2 Evaluating the Democracy-Inequality Model

We now turn to consider how well our model of democracy and inequality from Chapter 8 and
Chapter 10 fares when put to these four tests.

16.2.1 Check Assumptions of Conditional Independence

Our model presupposes that 𝑃 and 𝐼 are independent and that 𝑃 and 𝑀 are independent. Note
that the model is consistent with the possibility that, conditional on 𝐷, there is a correlation
between 𝑀 and 𝑃 or between 𝐼 and 𝑃 , as 𝐷 acts as a collider for these pairs of nodes.

To test these assumptions, we in fact need to depart from the dataset drawn from Haggard,
Kaufman, and Teo (2012) because these authors only examined cases in which 𝐷 = 1, those
that democratized. Thus, we cannot use these data to assess the relationships not conditional
on 𝐷 or conditional on 𝐷 = 0. We generate observations on all four nodes for a broader
set of cases by pulling together measures from multiple sources, with the aim of modeling
democratization that occurred between 1990 and 2000.7 We describe this data in more detail
in Appendix.

We can check some of the model’s assumptions in relation to conditional independencies
through a set of simple regression models, with results displayed in Table 16.3. In the first two
rows, we examine the simple correlation between 𝑃 and 𝐼 and between 𝑃 and 𝑀 , respectively.
We can see from the estimates in the first row that the data pattern is consistent with our
assumption of unconditional independence of 𝐼 and 𝑃 . However, we also see that there is
evidence of an unconditional correlation between 𝑃 and 𝑀 , something that is excluded by our
model.

7The data that we use to measure mobilization, from Clark and Regan (2016), cover only the 1990s.
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Table 16.3: Regression coefficients to assess conditional independence

Correlation Given estimate std.error p.value
P,I - 0.000 0.114 1.000
P,M - 0.291 0.131 0.029
P,I M = 0 -0.220 0.111 0.053
P,I M = 1 0.467 0.260 0.098

We can dig a little deeper, however. The model also implies that 𝑃 should be independent of
𝐼 given 𝑀—since 𝐷 blocks all paths between 𝑃 and either 𝐼 or 𝑀 . We test this assumption
in rows 3 and 4 of the table, where we examine the conditional independence of 𝑃 and 𝐼 given
𝑀 = 0 and given 𝑀 = 1. Here, the evidence is also troubling for our model, as we see a
relatively strong negative correlation between 𝑃 and 𝐼 when 𝑀 = 0, and positive correlation
when 𝑀 = 1.

While we cannot identify the correct model from this data pattern, one possible explanation
could be that pressure has a direct effect on mobilization, making mobilization the product
of inequality and pressure jointly.8 A model with an arrow running from 𝑃 to 𝑀 would
make the model consistent with the unconditional correlation between these two variables, the
conditional correlation between 𝑃 and 𝐼 given 𝑀 (since 𝑀 would now be a collider for 𝐼 and
𝑃 ), as well as the unconditional independence of 𝐼 and 𝑃 . A possible way forward—which
we do not pursue here—would be to now amend the model and evaluate the revised model
against an independent set of data.

16.2.2 Bayesian p-Value

We turn next to evaluating the democratization model using the Bayesian 𝑝−value approach,
and for this purpose can return to the data that we coded from Haggard, Kaufman, and
Teo (2012)’s qualitative vignettes. In the two panels of Figure 16.7, we plot the posterior
predictive distributions from our updated model for three quantities of interest: The outcome
𝐷, the correlation between 𝐼 and 𝑀 , and the correlation between 𝐼 and 𝐷. In each graph,
we indicate with a vertical line the mean value for these quantities for the data at hand and
report the 𝑝−value: The probability of the observed data conditional on our model.

As we can see, both visually and from the 𝑝−values, the model performs well (or at least, does
not signal issues) in the sense that the data that we observe are not unexpected under the
model.

8There is, in fact, also a strong positive interaction between 𝐼 and 𝑃 in a linear model of 𝑀.
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Figure 16.7: Three tests for the Inequality and Democracy model

16.2.3 Leave-One-Out Likelihoods

Turning to “leave one out” model assessment, we now consider comparing our base model
(the “restricted model”) to two models that make weaker assumptions. In one (the “partially
restricted” model), we drop the assumption of monotonicity of 𝑀 in 𝐼 . In a second alternative
(“unrestricted model”), we make no monotonicity assumptions for any of the causal relations

Figure 16.8, shows the relationship, for each model, of the likelihood of each data type against
the number of cases of that data type in the data. A data type here is defined as a possible
combination of realized values on all nodes (𝐼, 𝑃 , 𝑀 , and 𝐷). In each plot, the diagonal
line represents equality between the proportion of expected cases under the model and the
proportion of actual cases. Just eyeballing the relationships, you can see that the plots are
very similar. The unrestricted model has, however, somewhat more compressed (and so, less
sensitive) predictions. If we were to fit a line on the graphs we would have an adjusted 𝑅2 of
0.93 for the unrestricted model and 0.97 for the partially restricted and unrestricted models,
respectively.

More formally, we calculate the LOO likelihood for each model as 1.68e-74 for the restricted
model, 2.53e-75 for the partially restricted model, and 1.53e-73 for the unrestricted model. In
other words, we see that the most restricted model performs best on this criterion, though the
differences between the models are not large.
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Figure 16.8: LOO data predictions for three versions of the Inequality and Democracy model

16.2.4 Sensitivity to Priors

In our base model we assume a set of monotonicity relations among nodes. How much do
conclusions depend on these restrictions? We answer the question by comparing our conclusion
with these restrictions to what we would conclude without this assumption. As above, we
compare the fully restricted model, to a partially restricted model and a fully unrestricted
model.

We first show results for population inference from a mixed methods analysis. As seen in
Figure 16.9, our inferences regarding the overall effect of 𝐼 on 𝐷 are not very sensitive to the
monotonicity assumption at 𝑀 . However, they are extremely sensitive to the other monotonic-
ity assumptions made in the model: As we can see, the effect goes from around −0.25 to 0
when we remove all restrictions.

Our conditional inferences about the share of 𝐼 = 0, 𝐷 = 1 cases in which inequality mattered
are not sensitive to the monotonicity assumptions. In particular, in cases with 𝐼 = 0, 𝐷 = 1
we are about equally likely to think that democratization was due to low inequality given any
of the models. However, inferences conditional on 𝑀 are highly sensitive to the restrictions.
When we see that in fact there was no mobilization, our attribution increases in the restricted
model but decreases in the unrestricted model. In the fully unrestricted model our inferences
are not affected at all by observation of 𝑀 = 0.

Why is this? In the partially restricted model, we entertain the possibility that low inequality
mattered not just directly but also, perhaps, by inducing protests. However, we when you
observe no protests, we rule out this possible pathway. In the restricted model, we do not
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think that democratization could have been produced by low inequality via demonstrations—
but nevertheless entertain the possibility of mobilization that is not due to inequality, which
could nevertheless be the cause of democratization. In this case, observing no mobilization
removes a rival cause of democratization, not a second channel.

In all, we judge the conditional inferences as very sensitive to the monotonicity assumptions
we put in place. Defending a particular set of claims requires a stronger defense of the model
employed than would be needed if this were not the case.

−
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Figure 16.9: ATE of 𝐼 on 𝐷 for three models under different conditions

We now consider a process-tracing analysis in which we stipulate the probabilities of nodal
types rather than learning about them from the data. For this setup, we compare our restricted
model (𝑀1) to an alternative model (𝑀2) in which we allow for negative effects of 𝐼 on
𝑀 , but consider them to be unlikely rather than impossible (with null and positive effects
somewhat likely). We refer to these priors as “quantitative priors” in the sense that they place
a numerical value on beliefs rather than a logical restriction. Specifically, we define model 𝑀2
with prior probabilities on the elements of 𝜃𝑀 as: 𝑝(𝜃𝑀 = 𝜃𝑀

10) = 0.1, 𝑝(𝜃𝑀 = 𝜃𝑀
00) = 0.3,

𝑝(𝜃𝑀 = 𝜃𝑀
11) = 0.3, and 𝑝(𝜃𝑀 = 𝜃𝑀

01) = 0.3. This is in comparison to the 0, 1/3,1/3,1/3
distribution implied by the fully restricted model, 𝑀1.

In Figure 16.10 we compare findings for a set of cases with different data realizations.

The results differ in various modest ways. For cases with 𝐼 = 0, 𝐷 = 1 we ask whether the
low inequality caused democratization. There are some differences here when we are looking
for negative effects of inequality, though the ordering of inferences does not change. The
differences appear in the cases of Albania and Nicaragua, where 𝑀 = 1. Under priors fully
constrained to monotonic causal effects, we see that observing 𝑀 = 1 makes us think low
inequality was less likely to have caused democracy because 𝑀 = 1 represents an alternative
cause and because low inequality cannot cause democratization via 𝑀 if 𝐼 → 𝑀 effects cannot
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Figure 16.10: Inferences under alternative quantitative priors

be negative. However, if we allow for a negative effect of 𝐼 on 𝑀 , even while believing it to
be unlikely, we now believe a negative effect of inequality on democratization, conditional on
mobilization, to be more likely since now that effect can run from 𝐼 = 0 to 𝑀 = 1 to 𝐷 = 1.
Thus, our estimate for Albania and Nicaragua goes up under 𝑀2 relative to 𝑀1. We see,
likewise, that mobilization, 𝑀 , becomes less informative about the effect, as the estimates for
Albania (𝑀 = 1, 𝑃 = 0) are more similar to those for Mexico (𝑀 = 0, 𝑃 = 0), and those for
Nicaragua (𝑀 = 1, 𝑃 = 1) to those for Taiwan (𝑀 = 0, 𝑃 = 1).

Turning to cases with high inequality and democratization, inferences about the probability
of positive causation are unaffected by the assumption about the effect of 𝐼 on 𝑀 . The reason
is that, since we still maintain a monotonicity assumption for the direct effect of 𝐼 on 𝐷 (no
positive effects), the only question is whether there was an indirect effect. Since we maintain
the assumption of a monotonic effect of 𝑀 on 𝐷, it remains the case in both models that
observing 𝑀 = 0 rules out a positive indirect effect. If however 𝑀 = 1, then 𝐼 did not have
a negative effect on 𝑀 and the only question is whether 𝑀 = 1 because of 𝐼 or independent
of it—which depends only on the relative sizes of 𝜃𝑀

11 and 𝜃𝑀
01. These remain the same (and

equal to one another) in both models.

Overall the evaluation of the democracy and inequality model paints a mixed picture. Although
the model is able to recreate data patterns consistent with observations, the inferences from
within case observations discussed in Chapter 8 depended on assumptions about processes that,
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Table 16.4: Regression coefficients for 𝑀 and 𝑅 on 𝐷 (estimated separately).

Relation estimate std.error p.value
M~D -0.373 0.105 0.001
R~D 0.241 0.111 0.033

while theoretically compelling, can not be justified from observation of broader data patterns
even under relatively heroic assumptions on causal identification.

16.3 Evaluating the Institutions-Growth Model

Now we use these four techniques on our second application studying institutional quality and
economic growth. Recall that we used data from Rodrik, Subramanian, and Trebbi (2004) to
assess the causes of economic growth, focusing specifically on the effects of institutions and of
geography.

16.3.1 Check Assumptions of Conditional Independence

Our model presupposes unconditional independence between 𝑀 and 𝐷 and between 𝑅 and 𝐷.
We can see from the simple unconditional regressions reported in Table 16.4 that a dependence
exists that is not allowed for in our model. Mortality and distance are related, as are distance
from the equator and institutions.

We might consider then a model that allows for an arrow from 𝐷 to 𝑀 . In this case we have
a violation of the exclusion restriction. Even still, one might expect that taking account of
possible dependencies might not greatly alter analysis since we in effect block on each variable
when assessing the effect of another. We will revisit this question when we assess model
sensitivity.

16.3.2 Bayesian P-Value

We turn next to evaluating the institutions and growth model using the Bayesian 𝑝−value
approach, and for this purpose can return to the data that we coded from Rodrik, Subramanian
and Trebbi. In the two panels of Figure 16.11, we plot the posterior predictive distributions
from our updated model for two quantities of interest: The outcome 𝑌 , the size of a country’s
economy and the correlation between 𝑀 , the settler mortality rate and 𝑅, the quality of
institutions. In each graph, we indicate with a vertical line the mean value for these quantities
for the data at hand and report the 𝑝−value: The probability of the observed data conditional
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on our model. This shows the odds of observing the data we see if we assume our model is
true.

p = 1 p = 0.14

Test stat: Mean of Y Test stat: R, Y covariance
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Figure 16.11: Bayesian 𝑝 values for the Institutions and Growth model

This distribution has a low 𝑝 value, suggesting that the model does not update on the corre-
lation between 𝑅 and 𝑌 sufficiently; even after observing the data we remain surprised how
strong this relation is. The Figure looks essentially identical if we instead use the weaker
model in which we allow a 𝐷 to 𝑀 link.

If we repeat the exercise but imagining that our database were 10 times larger than it is (we
replicate it 10 times), the model will have more scope to learn, returning a some somewhat
better 𝑝 value of 10%. This suggests that the problem may not be with the structure of the
model so much as the limited confidence we have regarding causal relations.

16.3.3 Leave-One-Out (LOO) Cross-validation

Figure 16.12 shows the LOO likelihoods for the models with and without a 𝐷 to 𝑀 path.

We can see here that the LOO likelihoods are relatively similar for the different models. This
suggests our monotonicity restrictions are not having an enormous impact on the plausibility
of the model through this test. The LOO likelihood is 1.19e-92 for the base model and 1.61e-92
for the model that allows a 𝐷 → 𝑀 path.

The points off the 45 degree line in Figure 16.10 confirm, and provide greater detail about,
the weakness in the model that we uncovered in our analysis of Bayesian 𝑝 values. We can see
that we are systematically under-predicting cases in which 𝑌 = 𝑅 = 1 − 𝑀 = 1 − 𝐷, which is
why the model finds the true 𝑌 , 𝑅 correlation “surprising”.
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Figure 16.12: LOO data predictions for alternative models
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16.3.4 Sensitivity to Priors

We test for sensitivity to three features of the base model: The assumption of a monotonic
effect of mortality on institutions, the exclusion restriction (no direct 𝑀 to 𝑌 path), and
the exclusion of a 𝐷 to 𝑀 path. How much do conclusions depend on these assumptions?
We answer this question by comparing our conclusions with these assumptions to what we
would conclude by relaxing them. As above, we compare the baseline model in which all three
assumptions are embedded to a one-by-one relaxation of each assumption.

We first show results for population inference from a mixed-methods analysis, in Figure 16.13.
As we can see, our inferences are reasonably stable across models, whether we are estimating
the average effect of 𝑅 on 𝑌 , the share of 𝑅 = 1, 𝑌 = 1 cases in which institutions mattered,
or the share of 𝑅 = 0, 𝑌 = 0 cases in which institutions mattered. The most consequential
model assumption appears to be that of monotonicity for the effect of 𝑅 on 𝑌 .

Strong growth caused by 
 strong institutions

Low growth caused by 
weak institutions 

ATE

0.00 0.25 0.50 0.75
Posterior

model

Base model
Allow monotonicity
violation
Allow path from D to M
Allow exclusion 
 restriction violation

Figure 16.13: Sensitivity of population-level inferences to different model assumptions

We now consider the consequences of the same model assumptions for case-level
queries.Whereas for the democratization model we explored case-level queries under dif-
ferent assumed nodal-type probabilities, here we draw case-level inquiries from the updated
model and use the “uninformative-case” query procedure (see Section 9.3.2.1). Figure 16.14
shows the inferences we make given the same four different models for four types of cases. We
focus the analysis here on cases with weak institutions and poor growth, but with differing
values for 𝑀 and 𝐷. We can see, in terms of the substantive conclusions we would draw,
that patterns of inference for all cases are similar across the first three models. For instance,
learning that there was high mortality makes you more likely to think that Nigeria did poorly
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because of poor institutions, regardless of whether we require monotonicity in the 𝑅 to 𝑌
relationship or exclude a 𝐷 to 𝑀 path. The inferences are strongest in the case in which
monotonicity is not imposed, but qualitatively similar across the first three rows. Case-level
inference looks very different—indeed, becomes impossible—if we allow an arbitrary violation
of the exclusion restriction: We gain nothing at all from observation of 𝑀 and 𝐷.
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Figure 16.14: Sensitivity of probative value to three model assumptions

Overall, the evaluation of the institutions and growth model in Figure 16.14 suggests reasonably
robust data-based case-level inferences. However, these case-level queries do depend critically
on the plausibility of the exclusion restriction to identify the relation between institutions and
growth.

In summary, neither model emerges with a spotless bill of health. In both setups, our probing
points to areas where the models’ assumptions appear to be weighing on conclusions. Ulti-
mately, however, the sensitivity of conclusions to model assumptions seems greater for the
inequality model where monotonicity assumptions appear quite consequential.

16.4 Appendix

Data sources for the expanded inequality and democratization data set.
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• Inequality: We measure inequality, 𝐼 , using the Gini estimates from the University of
Texas Inequality Project (Galbraith (2016)). As we want to measure inequality at the
beginning of the period, we take the Gini measure for each country that is closest in
time to the year 1989. We then dichotomize the variable using the median value for the
period as a cutoff.

• Mobilization: We measure 𝑀 using the Mass Mobilization Protest Data from Clark
and Regan (2016). To capture the kinds of mobilization on which redistributive theories
of democratization focus, we restrict our focus to protests in the demand categories “land
farm issue,” “labor wage dispute,” “price increases, tax policy,” and “political behavior,
process.” We also include only those gatherings with a size of at least 1000 protesters.
We code a country case as 𝑀 = 1 if and only if, during the 1990s, it experienced at least
one protest that meets both the demand-type and size criteria.

• Pressure: We draw on the GIGA Sanctions Dataset to measure international pressure,
𝑃 . Specifically, we code a country case as 𝑃 = 1 if and only if the country was the target
of democratization-focused sanctions during the 1990-2000 period.

• Democratization: We use dichotomous democracy measures from Cheibub, Gandhi,
and Vreeland (2010), in two ways. First, we filter countries such that our sample includes
only those that were not democracies in 1990 (𝑁 = 77). We then use the democracy
measure for the year 2000 to determine which countries democratized, coding as 𝐷 = 1
those and only those cases that Cheibub et al. code as democracies in that year.
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17 Final Words

This book builds off the simple idea that we can usefully learn about the world by combining
new evidence with prior causal models to produce updated models of how the world works. We
can update a given model with data about different parts of a causal process, with, possibly,
different types of data from different cases. When asking specific questions—such as whether
this caused that or whether one or another channel is important—we look up answers in our
updated model of causal processes rather than seeking to answer the question directly from
data.

This way of thinking about learning, though certainly not new, is very different from many
standard approaches in the social sciences. It promises benefits, but it also comes with risks.
We try to describe both in this closing chapter.

The approach stands in particularly stark contrast to the design-based approach to causal
inference, which has gained prominence in recent years. Advances in design-based inferences
show that it is possible to greatly diminish the role of background assumptions for some
research questions and contexts. This is a remarkable achievement that has put the testing
of some hypotheses and the estimation of some causal quantities on firm footing. It allows
researchers to maintain agnostic positions and base their inferences more solidly on what they
know to be true—such as how units were sampled and how treatments were assigned—and
less on speculations about background data-generating processes. Nothing here argues against
these strengths.

At the same time, there are limits to model-free social science that affect the kinds of questions
we can ask and the conditions that need to be in place to be able to generate an answer.
Most simply, we often don’t understand the “design” very well, and random assignment to
different conditions, if possible at all, could be prohibitively expensive or unethical. More
subtly, perhaps, our goal as social scientists is often to generate a model of the world that we
bring with us to make sense of new contexts. Eschewing models, however, can make it difficult
to learn about them.

Drawing on pioneering work by computer science, statistics, and philosophy scholars, we have
outlined a principled approach to mobilizing prior knowledge to learn from new data in situa-
tions where randomization is unavailable and to answer questions for which randomization is
unhelpful. In this approach, causal models are guides to research design, machines for infer-
ence, and objects of inquiry. As guides, the models yield expectations about the learning that
can be derived from a given case or set of cases and from a given type of evidence, conditional
on the question being asked. As inferential machines, models allow updating on that query
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once the data are in hand. Finally, when we confront a model with data, we learn about the
parameters of the model itself, which can be used to answer a range of other causal questions
and allow the cumulation of knowledge across studies. To complement the conceptual infras-
tructure, we have provided software tools that let researchers build, update, and query binary
causal models.

17.1 The Benefits

Strategies centered on building, updating, and querying causal models come with striking
advantages.

Many questions. When we update a causal model, we do not estimate a single causal
quantity of interest: We learn about the model. Most concretely, when we encounter new
data, we update our beliefs about all parameters in the model at the same time. We can
then use the updated parameters to answer very broad classes of causal questions, beyond
the population-level average effect. These include case-level questions (Does 𝑋 explain 𝑌 in
this case?), process questions (Through which channel does 𝑋 affect 𝑌 ?), and transportability
questions (What are the implications of results derived in one context for processes and effects
in other contexts?).

Common answer strategy. Strikingly, these diverse types of questions are all asked and
answered in this approach using the same procedure: forming, updating, and querying a causal
model. Likewise, once we update a model given a set of data, we can then pose the full range
of causal queries to the updated model. In this respect, the causal models approach differs
markedly from common statistical frameworks in which distinct estimators are constructed to
estimate particular estimands.

Answers without identification.The approach can generate answers even when queries
are not identified. The ability to “identify” causal effects has been a central pursuit of much
social science research in recent years. But identification is, in some ways, a curious goal. A
causal quantity is identified if, with infinite data, the correct value can be ascertained with
certainty—informally, the distribution that will emerge is consistent with only one parameter
value. Oddly, however, knowing that a model, or quantity, is identified in this way does not
tell you that estimation with finite data is any good (Maclaren and Nicholson 2019). What’s
more, the estimation of a non-identified model with finite data is not necessarily bad. While
there is a tendency to discount models for which quantities of interest are not identified, in
fact, as we have demonstrated, considerable learning is possible even without identification,
using the same procedure of updating and querying models.1 Updating non-identified models
can lead to a tightening of posteriors, even if some quantities can never be distinguished from
each other.

1There is a large literature on partial identification. See Tamer (2010) for a review.
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Integration Embedding inference within an explicit causal model brings about an integration
across forms of data and beliefs that may otherwise develop in isolation from one another. For
one thing, the approach allows us to combine arbitrary mixes of forms of evidence, including
data on causes and outcomes and evidence on causal processes (whether from the same or
different sets of cases). Further, the causal-model approach ensures that our findings about
cases (given evidence about those cases) are informed by what we know about the population
to which those cases belong, and vice versa. And, as we discuss further below, the approach
generates integration between inputs and outputs: It ensures that the way in which we update
from the data is logically consistent with our prior beliefs about the world.

A framework for knowledge cumulation. Closely related to integration is cumulation: A
causal-model framework provides a ready-made apparatus for combining information across
studies. Thinking in meta-analytic terms, the framework provides a tool for combining the
evidence from multiple independent studies. Thinking sequentially, the model updated from
one set of data can become the starting point for the next study of the same causal domain.

Yet organizing inquiry around a causal model allows for cumulation in a deeper sense as
well. Compared with most prevailing approaches to observational inference—where the back-
ground model is typically left implicit or conveyed informally or incompletely—the approach
ensures transparency about the beliefs on which inferences rest. Explicitness about assump-
tions allows us to assess the degree of sensitivity of conclusions to our prior beliefs. Sensitivity
analyses cannot, of course, tell us which beliefs are right. But they can tell us which assump-
tions are most in need of defense, pinpointing where more learning would be of greatest value.
Those features of our model about which we are most uncertain and that matter most to
our conclusions—be it the absence of an arrow, a restriction, a prior over nodal types, or the
absence of confounding—represent the questions most in need of answers down the road.

A framework for learning about strategies. As we showed in Chapter 12 and Chapter 13,
access to a model provides an explicit formulation of how and what inferences will be drawn
from future data patterns and provides a formal framework for justifying design decisions. Of
course, this feature is not unique to model-based inference—one can certainly have a model
that describes expectations over future data patterns and imagine what inferences you will
make using design-based inference or any other procedure.

Conceptual clarifications. Finally, we have found that this framework has been useful for
providing conceptual clarification on how to think about qualitative, quantitative, and mixed-
method inference. Consider two common distinctions that dissolve under our approach.

The first is with respect to the difference between “within-case” and “between-case” inference.
In Humphreys and Jacobs (2015), for instance, we drew on a common operationalization of
“quantitative” and “qualitative” data as akin to “dataset” and “causal process” observations,
respectively, as defined by Collier, Brady, and Seawright (2010) ( see also Mahoney (2000)). In
a typical mixed-method setup, we might think of combining a “quantitative” dataset containing
𝑋 and 𝑌 (and covariate) observations for many cases with “qualitative” observations on causal
processes, such as a mediator 𝑀 , for a subset of these cases. But this apparent distinction has
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no meaning in the formal setup and analysis of models. There is no need to think of 𝑋 and
𝑌 observations as being tied to a large-𝑁 analysis or of observations of mediating or other
processes as being tied to small-𝑁 analysis. One could, for instance, have data on 𝑀 for a large
set of cases but data on 𝑌 or 𝑋 for only a small number. Updating the model to learn about
the causal query of interest will proceed in the same basic manner. The cross-case/within-case
dichotomy plays no role in the way inferences are drawn: Given any pattern of data we observe
in the cases at hand, we are always assessing the likelihood of that data pattern under different
values of the model’s parameters. In this framework, what we have conventionally thought
of as qualitative and quantitative inference strategies are not just integrated; the distinction
between them breaks down completely.

A second is with regard to the relationship between beliefs about queries and beliefs about the
informativeness of evidence. In many accounts of process tracing, researchers posit a set of
prior beliefs about the values of estimands and other—independent—beliefs about the informa-
tiveness of within-case information. We do this for instance, in Humphreys and Jacobs (2015).
It is also implicit in approaches that assign uniform distributions to hypotheses (e.g., Fairfield
and Charman (2017)). Viewed through a causal models lens, however both sets of beliefs—
about the hypothesis being examined and about the probative value of the data—represent
substantive probabilistic claims about the world, particularly about causal relationships in
the domain under investigation. They, thus, cannot be treated as generally independent of
one another: Our beliefs about causal relations imply our beliefs about the probative value
of the evidence. These implications flow naturally in a causal-model framework. When both
sets of beliefs are derived from an underlying model representing prior knowledge about the
domain of interest, then the same conjectures that inform our beliefs about the hypotheses
also inform our beliefs about the informativeness of additional data. Seen in this way, the
researcher is under pressure to provide reasons to support beliefs about probative value, but
more constructively, they have available to them a strategy to do so.2

17.2 The Worries

While we have found the syntax of Directed Acyclic Graphs (DAGs) to provide a flexible
framework for setting up causal models, we have also become more keenly aware of some of
the limitations of DAGs in representing causal processes (see also A. P. Dawid (2010) and
Cartwright (2007)). We discuss a few of these here.

Well-defined nodes? A DAG presupposes a set of well-defined nodes that come with location
and time stamps. Wealth in time 𝑡 affects democracy in time 𝑡 + 1 which affects wealth in

2As an illustration, one might imagine a background model of the form 𝑋 → 𝑌 ← 𝐾. Data that are consistent
with 𝑋 causing 𝑌 independent of 𝐾 would suggest a high prior (for a new case) that 𝑋 causes 𝑌 , but weak
beliefs that 𝐾 is informative for 𝑋 causing 𝑌 . Data that are consistent with 𝑋 causing 𝑌 if and only
if 𝐾 = 1 would suggest a lower prior (for a new case) that 𝑋 causes 𝑌 , but stronger beliefs that 𝐾 is
informative for 𝑋 causing 𝑌 .
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time 𝑡. Yet it is not always easy to figure out how to partition the world into such neat event
bundles. Wealth in 1985 is not an “event” exactly but a state, and the temporal ordering
relative to “Democracy 1985” is not at all clear. Moreover, even if events are coded into
well-ordered nodes, values on these nodes may poorly capture actual processes, even in simple
systems. Consider the simplest setup with a line of dominos. You are interested in whether
the fall of the first domino causes the fall of the last one. But the observations of the states
of the dominos at predefined points in time do not fully capture the causal process as seen
by observers. The data might report that (a) domino 1 fell and (b) domino 2 fell. But the
observer will notice that domino 2 fell just as domino 1 hit it.

Acyclic, really? DAGs are by definition acyclic. And it is not hard to argue that, since
cause precedes effect, causal relations should be acyclic for any well-defined nodes. In practice,
however, our variables often come with coarse periodizations: There was or was not mobiliza-
tion in the 1990s; there was or was not democratization in the 1990s. We cannot extract the
direction of arrows from the definition of nodes this coarse.

Coherent underlying causal accounts. The approach we describe is one in which re-
searchers are asked to provide a coherent model—albeit with uncertainty—regarding the ways
in which nodes are causally related to each other. For instance, a researcher interested in
using information on 𝐾 to ascertain whether 𝑋 caused 𝑌 is expected to have a theory of
whether 𝐾 acts as a moderator or a mediator for 𝑋, and whether it is realized before or after
𝑌 . Yet it is possible that a researcher has well-formed beliefs about the informativeness of
𝐾 without an underlying model of how 𝐾 is causally related to 𝑋 or 𝑌 . Granted, one might
wonder where these beliefs come from or how they can be defended. We nonetheless note that
one limitation of the approach we have described is that one cannot easily make use of an
observation without a coherent account of that observation’s causal position relative to other
variables and relationships of interest.

Complexity. To maintain simplicity, we have largely focused in this book on models with
binary nodes. At first blush, this class of causal models indeed appears very simple. Yet
even with binary nodes, complexity rises rapidly as the number of nodes and connections
among them increases. As a node goes from having 1 parent to 2 parents to 3 parents to 4
parents, for instance, the number of nodal types—at that node alone—goes from 4 to 16 to
256 to 65,536, with knock-on effects for the number of possible causal types (combinations of
nodal types across the model). A move in the direction of continuous variables—say, from
binary nodes to nodes with three ordinal values—would also involve a dramatic increase in
the complexity of the type-space.3 There are practical and substantive implications of this.
A practical implication is that one can hit computational constraints very quickly for even
moderately sized models. Substantively, models can quickly involve more complexity than
humans can comfortably understand.

3If, for instance, we moved to nodes with three ordered categories, then each of 𝑌 ’s nodal types in an 𝑋 → 𝑌
model would have to register three potential outcomes, corresponding to the three values that 𝑋 takes on.
And 𝑌 would have 3 × 3 × 3 = 27 nodal types (as 𝑌 can take on three possible values for each possible
value of 𝑋).
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One solution is to move away from a fully nonparametric setting and impose structure on
permissible function forms—for example, by imposing monotonicity or assuming no high level
interactions. Inferences then are conditional on these simplifying assumptions.

A second approach might be to give up on the commitment to a complete specification of
causal relations between nodes and seek lower dimensional representations of models that are
sufficient for specific questions we care about. For instance, we could imagine representing an
𝑋 → 𝑌 model with just two parameters rather than four (for 𝑌 ): Define 𝜏 ∶= 𝜃𝑌

10 − 𝜃𝑌
01 and

𝜌 ∶= 𝜃𝑌
11 − 𝜃𝑌

00, both of which are identified with experimental data. These give us enough to
learn about how common different types of outcomes are as well as average effects, though not
enough to infer the probability that 𝑋 caused 𝑌 in an 𝑋 = 𝑌 = 1 case.

Unintended structure. The complexity of causal models means that it is easy to generate
a fully specified causal model with features that we do not fully understand. In the same way,
it is possible to make choices between models unaware of differences in assumptions that they
have built in.

Consider two examples:

• We specify a model 𝑋 → 𝑌 and assume flat priors over nodal types. The implied
prior that 𝑋 has a positive effect on 𝑌 is then 0.25. We then add detail by specifying
𝑋 → 𝑀 → 𝑌 but continue to hold flat priors. In our more detailed model, however, the
probability of a positive effect of 𝑋 on 𝑌 is now just 0.125. Adding the detail requires
either moving away from flat priors on nodal types or changing priors on aggregate causal
relations.

• We specify a model 𝑋 → 𝑌 ← 𝑊 and build in that 𝑊 is a smoking gun for the effect of
𝑋 on 𝑌 . We add detail by specifying 𝑋 → 𝑀 → 𝑌 ← 𝑊 . This means, however, that
𝑊 cannot be a smoking gun for 𝑌 unless the 𝑋 → 𝑀 relation is certain. Why? To be a
smoking gun, it must be the case that, if 𝑊 = 1, we are sure that 𝑋 causes 𝑀 and that
𝑀 causes 𝑌 , which requires an arrow from 𝑊 to 𝑀 and not just from 𝑊 to 𝑋.

Model-dependence of conclusions One striking aspect of some of the analyses presented
here is how sensitive conclusions can be to what would seem to be quite modest changes to
models. We see two ways of thinking about the implications of this fact for a causal-models
framework.

One lesson to draw would be that there are tight limits to building inference upon causal
models. If results in this approach depend heavily on prior beliefs, which could be wrong, then
we might doubt the utility of the framework. On this reasoning, the safer option is to rely on
design-based inference to the extent possible.

An alternative lesson also offers itself, however. To the extent that our inferences depend on
our background causal beliefs, a transparent and systematic engagement with models becomes
all the more important. If inferences depend on models that are not explicitly articulated, we
have no way of knowing how fragile they are, how they would change under an alternative set
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of premises, or what kind of learning we need to undertake if we want to generate more secure
conclusions.

We do not see causal models as the only way forward or as a panacea, and we are conscious
of the limitations and complexities of the approach we have outlined, as well as the need
for extension and elaboration along numerous fronts. Yet we think there is value in further
development of forms of empirical social science that can operate with analytic transparency
outside the safe inferential confines of random assignment.

17.3 The Future

The future, as we see it, lies in improvements in cumulation, coordination, and model ground-
ing.

Cumulation The cumulation of knowledge requires integration.

As we acquire new evidence—perhaps from observation of additional cases or new events—we
want to be able to update our general beliefs about how the world works by integrating new
information with the existing store of knowledge. At the same time, we want our inferences
about individual cases to be informed by our beliefs about how the world works in general.
Causal models provide a natural framework for cumulating knowledge in this way. We have
spelled out in this book how an individual researcher can use models to join up new data with
prior beliefs and ground case-level inferences in beliefs about population-level parameters. In
a scientific discipline, however, cumulation must also operate across researchers. For a field to
make progress, I need to update my beliefs in light of your new evidence and vice versa.

There are more collaborative and adversarial ways to think about this kind of learning across
researchers. One more collaborative approach is for researchers to agree on an underlying
causal structure. Then, new data will lead not just to individual updating but also, hopefully,
to convergence in beliefs—a feature that should hold for identified causal queries, but not
universally. This is a nontrivial ask. Not only do I need access to your evidence, but we
have to be operating to some degree with a common causal model of the domain of interest;
otherwise, the data that you generate might fail to map onto my model. One approach is
for researchers to agree on an overarching causal model that nests submodels that different
researchers have focused on.

However, in practice, there may be little reason to be optimistic that individual researchers
will naturally tend to generate models that align with one another. Not only might our
substantive causal beliefs diverge, but we might also make differing choices about matters of
model-construction—from which nodes to include and the appropriate level of detail to the
manner of operationalizing variables. Indeed, it might also be that generating comprehensive
models undermines the goal of generating simple representations of causal processes.
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Even in an adversarial context, however, we believe the approach described in this book would
add value: It would require researchers to be clear and precise about their distinct models.
Then these rival models, rather than being aggregated into a single model, could be pitted
against each other using tools like those we describe in Chapter 16.

Coordination. Turning causal models into vehicles for knowledge cumulation in a field will
thus require coordination around models. We are under no illusion that such coordination
would be easy. But productive coordination would not require prior agreement about how the
world works.

One possibility would be to fix (provisionally, at least) the set of nodes relevant in a given
domain—including outcomes of interest, potential causes, and mediators and moderators im-
plicated in prevailing theories—and how those nodes are defined. Individual researchers would
then be free to develop their own models by drawing arrows and setting priors and restrictions
in line with their beliefs. Coordination around model nodes would then guide data-collection,
as teams running new studies would seek to collect data on at least some subset of the common
nodes—allowing, in turn, for all models to be updated as the new data come in.

Another possibility would be to exploit modularity, with different researchers or projects mod-
eling different parts of a causal system. For instance, in the field of democratization, one set
of researchers might model and collect data on links between inequality and democratization;
others might focus on the role of external pressures; while still others might focus on inter-elite
bargaining. Coordination would operate at the level of interoperability. Modules would have
to have at least some overlapping nodes for updating from new data to operate across them.
Ideally, each module would also take into account any confounding among its nodes that is
implied by other modules.

Another, more minimalist mode of coordination would be for researchers to develop models
that agree only on the inclusion of one or more outcome nodes. As new data comes in, models
would then be set in competition over predictive performance.

Coordination would also require agreement on some minimal qualities that models must have.
For instance, we would surely want all models to be well defined, following the basic rules of
DAG-construction and with clear rules for operationalizing all nodes.

Grounding. Most of our models are on stilts. We want them grounded. One kind of
grounding is theoretical. As we show in Chapter 6, for instance, game-theoretic models can
be readily translated into causal models. The same, we believe, can be done for other types of
behavioral theories. Clear informal theoretical logics could underwrite causal models also. A
second approach would be subjective-Bayesian: Models could be founded on aggregated expert
beliefs. A third—our preferred—form of grounding is empirical. As we discuss in Chapters
Chapter 9 and Chapter 15, experimental data can be used to anchor model assumptions,
which can, in turn, provide grounds for drawing case-level inferences. Ultimately, we hope the
benefits from mixing methods will flow in both directions.
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We have taken a deep dive into the world of causal models to scope out whether and how they
can support social scientists engaging in qualitative and mixed-methods research. We emerge
convinced of the promise of the framework. Embedding our beliefs in a causal model enables
rich forms of integration, allowing us to cumulate knowledge across cases, types of evidence,
settings, study designs, and levels of analysis to address a vast array of causal questions. The
framework also provides a coherent machinery to connect theoretical structures to empirical
analyses. We have shown how this integration can strengthen the underpinnings of case-
oriented research, providing microfoundations not just for the classic process tracing tests but
for case-level probative value in general. We have, however, also emerged with a sharpened
appreciation of how difficult it can be to justify our starting assumptions, of the extraordinary
computational and conceptual complexity arising from all but the simplest causal models, and
of the sometimes strong sensitivity of conclusions to our representations of causal processes.
We conclude with cautious optimism: Convinced of the need both to re-center social science
research on causal models and to keep these models permanently under scrutiny.
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Part VI

End matter
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18 Glossary

term
(typical)
symbol meaning

Ambiguities matrix 𝐴 A matrix of 0s and 1s that maps from causal types
(rows) to data types (columns). We call it an
ambiguities matrix because the mapping from causal
types to data types is many to one: Each causal type
produces a unique data type, but a data type can be
produced by many causal types.

Causal function 𝑓𝑌 (𝑋, 𝜃𝑌 ) A function that maps from the possible values of the
parents of a node to the possible values of the node. A
change in the value of an argument is interpreted as a
controlled change. Thus,
𝑓𝑌 (𝑋 = 1, 𝜃𝑌 ) − 𝑓𝑌 (𝑋 = 0, 𝜃𝑌 ) can be interpreted as
the change in 𝑌 as 𝑋’s value is manipulated from 0 to
1. See Remark 2.1.

Causal model M, M’ A triple containing: (1) a partially ordered set of
(endogenous and exogenous) nodes, (2) a set of
functions, one for each endogenous variable, specifying
how it responds to the values of earlier variables in the
ordering, (3) a probability distribution over exogenous
variables. Note that (1) and (2) together define a
“structural causal model” whereas (1), (2), and (3)
describe a “probabilistic causal model” which we refer
to simply as a causal model. See Definition 2.1.

Causal type 𝜃 A causal type is a concatenation of nodal types, one
for each node. The causal type of a unit fully
describes what values that unit takes on at all nodes
and also how that unit would respond to all
interventions. Example: (𝜃𝑋

0 , 𝜃𝑌
01) is a causal type that

has 𝑋 = 0 and 𝑌 = 0 but would have 𝑌 = 1 if 𝑋 were
set to 1. Types like this are written in code in
CausalQueries as X0.Y01.

Clue 𝐾 A variable or collection of variables whose values are
potentially informative for some query.
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term
(typical)
symbol meaning

Conditional
independence

(𝐴 ⟂⟂ 𝐵 ∣ 𝐶) Two (sets of) variables (𝐴 and 𝐵) are conditionally
independent given some third (set of) variables (𝐶) if,
for all 𝑎, Pr(𝐴 = 𝑎 ∣ 𝐵, 𝐶) = Pr(𝐴 = 𝑎 ∣ 𝐶) See
Definition 2.2.

Credibility interval A set of possible values within which we believe a
parameter lies with some specified probability. In
tables we often use cred low and cred high to
indicate the lower and upper bounds of a 95%
credibility interval.

DAG Directed acyclic graph. A graphical representation of
a structural causal model, indicating nodes,
parent-child relations, and relations of conditional
independence.

Data strategy 𝑆 A plan indicating for how many nodes data of
different types will be gathered. A data strategy
might indicate what new data will be gathered at one
point as a function of what has already been seen at
earlier points.

Dirichlet priors alpha, 𝛼 Nonnegative numbers used to characterize a prior
distribution over a simplex. The implied mean is the
normalized vector 𝜇 = 𝛼/ ∑𝑗 𝛼𝑗 and the variance is
𝜇(1 − 𝜇)/(1 + ∑𝑗 𝛼𝑗). See Section 5.1.4.

Data type or event
type

A possible set of values on all nodes (including,
possibly, NAs). Example: X0Y1 = (𝑋 = 0, 𝑌 = 1).

Endogenous node 𝑋, 𝑌 A node that is a function of other nodes (whether
these are just exogenous nodes, or a mix of
endogenous and exogenous nodes). All substantive
nodes in a model are typically endogenous in that
they, minimally, have an exogenous (𝜃𝑗) node pointing
into them.

Event probability 𝑤 The probability of a data type or event type arising.
Example: 𝑤01 = Pr(𝑋 = 0, 𝑌 = 1).

Exogenous node 𝜃𝑋, 𝜃𝑌 A node that is not a function of other nodes in a
model. Exogenous nodes are often not represented on
causal graphs, but in general there is implicitly one
exogenous node for each endogenous node. In this
book’s use of causal models, exogenous nodes typically
represent nodal types.
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term
(typical)
symbol meaning

Flat priors We say priors are flat when they place equal weight on
all possibilities. For instance, we refer to a Dirichlet as
describing flat priors when 𝛼 is a vector of 1s.

Mediator 𝑀 A mediator is a variable (node) that lies along the
causal pathway of one variable to another and
through which a causal effect may pass. For instance,
in an 𝑋 → 𝑀 → 𝑌 model, 𝑀 is a potential mediator
for the effect of 𝑋 on 𝑌 .

Moderator 𝐾, 𝑀, 𝑊 A moderator is a variable that affects the effect of one
variable on another. For instance, in an 𝑋 → 𝑌 ← 𝐾
model, 𝐾 is a potential moderator, potentially
altering the affect of 𝑋 on 𝑌

Multinomial
distribution

A probability distribution reporting the probability of
a given distribution of outcomes across categories.

Nodal type 𝜃𝑋 The way that a node responds to the values of its
parents. Example: 𝜃𝑌

10, sometimes written Y10 is a
nodal type for which 𝑌 takes the value 1 if 𝑋 = 0 and
0 if 𝑋 = 1.

Parent (child) 𝑝𝑎() 𝑋 is a parent of 𝑌 if a change in 𝑋 possibly induces a
change in 𝑌 even when all other nodes in the graphs
are fixed. 𝑌 is a child of 𝑋 if a change in 𝑋 sometimes
induces a change in 𝑌 even when all other nodes are
fixed. On the graph, an arrow from 𝑋 to 𝑌 indicates
that 𝑋 is a parent of 𝑌 and that 𝑌 is a child of 𝑋.

Parameter 𝜆 An unknown quantity of interest. In many
applications in the book, 𝜆𝑉

𝑥 denotes the share of
units that have nodal type 𝑥 on node 𝑉 . In models
with unobserved confounding, parameters are often
thought of as the conditional probabilities of nodal
types. Example: 𝜆𝑌

01|𝜃𝑀=𝜃𝑀
01

= Pr(𝜃𝑌 = 𝜃𝑌
01|𝜃𝑀 = 𝜃𝑀

01).
Parameter matrix 𝑃 A matrix of 0s and 1s that maps from parameters

(rows) to causal types (columns).
Posterior 𝑝(𝜆|𝑑) A probability distribution over a set of parameter

values after observing data.
Potential outcomes 𝑌𝑖(0), 𝑌𝑖(1) The values that a unit would take on under a specified

set of conditions—for instance, if 𝑋 were set to 0 or 𝑋
were set to 1. See Remark 2.1.

Prior 𝑝(𝜆) A probability distribution over a set of parameter
values before observing data.
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term
(typical)
symbol meaning

Query 𝑄, 𝑞 A question asked of a model, either about the values
of nodes or the values that nodes would take under
specified operations. We use lower case 𝑞 to represent
the answer to the query (the estimand), which is the
realization of 𝑄. Simple queries, such as the
probability that 𝑋 has a positive effect on 𝑌 , ask
about the probability of some set of causal types.
Complex queries such as the average treatment effect,
ask for summaries of simple queries: In a binary setup,
the share of units with a positive effect less the share
of units with a negative effect.
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19 Errata

• 2024-01-13: Typo in caption of Figure 16.6.

• 2023-12-20: Text before Table 11.1.

• 2025-01-06: Correction of captions in Section 6.3
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