
Build, update, and query causal models with CausalQueries: Cheat Sheet

1. Make your model

CausalQueries works with models that assume a causal structure over binary nodes.

a. Make your model

Provide a causal structure connecting nodes using dagitty syntax.

model_1 <- make_model("X -> Y; Z -> Y") # simple
model_2 <- make_model("Z -> X -> Y; X <-> Y") # with confounding

b. Optionally: refine your model

Set restrictions (to rule out some nodal types)

naming types
make_model("X -> M -> Y") |>

set_restrictions(labels = list(M = c("10", "11"), Y = "00"))

using logical statements
make_model("X -> Y") |>

set_restrictions(statement = "Y[X=1] > Y[X=0]")

natural language helpers
make_model("X -> Y") |> set_restrictions(decreasing("X", "Y"))

Set priors (to make use of prior knowledge)

make_model("X -> Y") |> set_priors(distribution = "jeffreys")

make_model("X -> Y") |>
set_priors(statement = "Y[X=1] > Y[X=0]", alphas = .25)

Set parameters (to imagine a particular world)

make_model("X -> Y") |>
set_parameters(statement = "Y[X=1] > Y[X=0]", parameters = .5)

c. Graph your model

make_model("X -> M -> Y <- X; X <-> Y") |> plot()

M

X

Y

d. Inspect your model

make_model("X -> Y") |> inspect("nodal_types")
make_model("X -> Y") |> inspect("causal_types")

2. Update your model

To update, pass the model and data to update_model().

Data can be complete or missing at random.

model <- make_model("X -> M -> Y")
data <- data.frame(X = 0:1, M = 1:0, Y = 0:1) |> uncount(10)

model <- update_model(model, data)

Posterior distributions on parameters can be accessed directly (via grab or inspect) or
when you query the model.

model |> grab("posterior_distribution") |>
ggplot(aes(Y.01, Y.10)) + geom_point(alpha = .5)

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3

Y.01

Y.
10

Use additional Stan arguments to control updating

Other Stan arguments can be passed to update_model():
• iter sets the number of iterations (and ultimately posterior draws)
• chains sets the number of chains (parallel chains can speed things up)
• many other options via ?rstan::stan

Causal syntax

CausalQueries uses a causal syntax that lets you describe arbitrary observational or
controlled values of a node. Square brackets indicate controlled values (implied application
of the “do” operator).
An observational query: types that produce Y == 1.

make_model("X -> M -> Y <- X") |>
get_query_types("Y==1")

A simple counterfactual query: types that produce Y == 1 when X is set to 1.

make_model("X -> Y") |>
get_query_types("Y[X=1]==1")

A complex query: types for which Y == 1 when X=1 and M is held constant at the value it
would take if X were 0.

make_model("X -> M -> Y") |>
get_query_types("Y[M=M[X=0], X=1]==1")

We provide helpers for common causal statements (increasing, decreasing,
interacts, etc.), which are useful for querying models or setting restrictions.

3. Query your model

Formulate a causal query using causal syntax and put the query to the model.

Provide:
• causal queries (queries)
• conditions (given)
• which parameters to use (using)

model <- make_model("X -> M -> Y")

results <- model |>
query_model(

queries = list(
ATE = "Y[X=1] - Y[X=0]",
POS = "Y[X=1] > Y[X=0]"

),
given = c(

"All",
"X==1 & Y==1",
"X==1 & Y==1 & M==0"

),
using = c("parameters", "priors")

)

Putting it all together

results <-
make_model("X->M->Y") |>
update_model(data) |>
query_model(

query = "Y[X=1]>Y[X=0]",
given = c("All", "X==1 & Y==1", "X==1 & Y==1 & M==1"),
using = c("priors", "posteriors")

)
and view as table or plot:

plot(results)

Causal Queries

0.00 0.25 0.50 0.75 1.00

Y[X=1]>Y[X=0]

Y[X=1]>Y[X=0]
given X==1 & Y==1

Y[X=1]>Y[X=0]
given X==1 & Y==1 & M==1

value

using posteriors priors

CausalQueries makes it easy to make, update, and query causal models defined over binary variables. Model parameters are defined using potential outcomes and updated with rstan. For more see https://integrated-inferences.github.io/ CC BY SA package version 1.4.4 • Updated: 2026-01-25

https://integrated-inferences.github.io/

	1. Make your model
	2. Update your model
	3. Query your model

