
Build, update, and query causal models with CausalQueries: Cheat Sheet

1. Make your model

CausalQueries works with models that assume a causal structure over binary nodes.

a. Make your model

Provide a causal structure connecting nodes using dagitty syntax.

model_1 <- make_model("X -> Y; Z -> Y") # simple
model_2 <- make_model("Z -> X -> Y; X <-> Y") # with confounding

b. Optionally: refine your model

Set restrictions (to rule out some nodal types)

# naming types
make_model("X -> M -> Y") |>

set_restrictions(labels = list(M = c("10", "11"), Y = "00"))

# using logical statements
make_model("X -> Y") |>

set_restrictions(statement = "Y[X=1] > Y[X=0]")

# natural language helpers
make_model("X -> Y") |> set_restrictions(decreasing("X", "Y"))

Set priors (to make use of prior knowledge)

make_model("X -> Y") |> set_priors(distribution = "jeffreys")

make_model("X -> Y") |>
set_priors(statement = "Y[X=1] > Y[X=0]", alphas = .25)

Set parameters (to imagine a particular world)

make_model("X -> Y") |>
set_parameters(statement = "Y[X=1] > Y[X=0]", parameters = .5)

c. Graph your model

make_model("X -> M -> Y <- X; X <-> Y") |> plot()
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d. Inspect your model

make_model("X -> Y") |> inspect("nodal_types")
make_model("X -> Y") |> inspect("causal_types")

2. Update your model

To update, pass the model and data to update_model().

Data can be complete or missing at random.

model <- make_model("X -> M -> Y")
data <- data.frame(X = 0:1, M = 1:0, Y = 0:1) |> uncount(10)

model <- update_model(model, data)

Posterior distributions on parameters can be accessed directly (via grab or inspect) or
when you query the model.

model |> grab("posterior_distribution") |>
ggplot(aes(Y.01, Y.10)) + geom_point(alpha = .5)

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3

Y.01

Y.
10

Use additional Stan arguments to control updating

Other Stan arguments can be passed to update_model():
• iter sets the number of iterations (and ultimately posterior draws)
• chains sets the number of chains (parallel chains can speed things up)
• many other options via ?rstan::stan

Causal syntax

CausalQueries uses a causal syntax that lets you describe arbitrary observational or
controlled values of a node. Square brackets indicate controlled values (implied application
of the “do” operator).
An observational query: types that produce Y == 1.

make_model("X -> M -> Y <- X") |>
get_query_types("Y==1")

A simple counterfactual query: types that produce Y == 1 when X is set to 1.

make_model("X -> Y") |>
get_query_types("Y[X=1]==1")

A complex query: types for which Y == 1 when X=1 and M is held constant at the value it
would take if X were 0.

make_model("X -> M -> Y") |>
get_query_types("Y[M=M[X=0], X=1]==1")

We provide helpers for common causal statements (increasing, decreasing,
interacts, etc.), which are useful for querying models or setting restrictions.

3. Query your model

Formulate a causal query using causal syntax and put the query to the model.

Provide:
• causal queries (queries)
• conditions (given)
• which parameters to use (using)

model <- make_model("X -> M -> Y")

results <- model |>
query_model(

queries = list(
ATE = "Y[X=1] - Y[X=0]",
POS = "Y[X=1] > Y[X=0]"

),
given = c(

"All",
"X==1 & Y==1",
"X==1 & Y==1 & M==0"

),
using = c("parameters", "priors")

)

Putting it all together

results <-
make_model("X->M->Y") |>
update_model(data) |>
query_model(

query = "Y[X=1]>Y[X=0]",
given = c("All", "X==1 & Y==1", "X==1 & Y==1 & M==1"),
using = c("priors", "posteriors")

)
and view as table or plot:

plot(results)
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