Build, update, and query causal models with CausalQueries: Cheat Sheet

1. Make your model

CausalQueries works with models that assume a causal structure over binary nodes.

2. Update your model

To update, pass the model and data to update_model ().

3. Query your model

Formulate a causal query using causal syntax and put the query to the model.

. Mak del i Provide:
1 @ Wakeyourmode 1 Data can be complete or missing at random. * causal queries (queries)
Provide a causal structure connecting nodes using dagitty syntax. model <- make_model("X -> M -> Y") . cor_1ditions (given) .
model 1 <- make model("X - Y, 7 -> Yll) # Simple data <- data.frame (X = 0:1, M= 1:0, Y = 0: 1) |> uncount(lO) * which parameters to use (u31ng)
model_2 <- make_model("Z -> X -> Y; X <-> Y") # with confounding model <- make_model("X -> M -> Y")
model <- update_model(model, data)
o)) . results <- model [>
Posterior distributions on parameters can be accessed directly (via grab or inspect) or ery model (
i b. Optionally: refine your model when you query the model. qu Y_. .
queries = list(
model |> grab("posterior_distribution") [> ATE = "Y[X=1] - Y[X=0]",
Set restrictions (to rule out some nodal types) ggplot(aes(Y.01, Y.10)) + geom_point(alpha = .5) POS = "Y[X=1] > Y[X=0]"
naming types 1) ’
make _model("X -> M -> Y") |> glx'{en : c(
set_restrictions(labels = 1list(M = c("10", "11"), Y = "00")) 05 Al1l",
' iE=il g ==
NY——= — —_—)"
using logical statements ° L T
make_model ("X -> Y") |> > o5 _) . o
set_restrictions(statement = "Y[X=1] > Y[X=0]") R ; using = c("parameters", "priors")
natural language helpers *
make_model ("X -> Y") |> set_restrictions(decreasing("X", "Y")) . i Putting itall together
D‘U 0‘1 0.‘2 0.‘3
Y.01
Set priors (to make use of prior knowledge) results <-
0 del ("X ™y | « % I "y make _model ("X->M->Y") |[>
make_mode -> > set_priors(distribution = "jeffreys
- -P . y @ Use additional Stan arguments to control updating update_model(data) |[>
. . - query_model (
make_modclel(X->y 1> § . Other Stan arguments can be passed to update_model(): query = "Y[X=1]>Y[X=0]",
set_priors(statement = "Y[X=1] > Y[X=0]", alphas = .25) + iter sets the number of iterations (and ultimately posterior draws) given = c("All", "X==1 & Y==1", "X==1 & Y==1 & M==1"),
» chains sets the number of chains (parallel chains can speed things up) using = c("priors", "posteriors")
Set parameters (to imagine a particular world) + many other options via ?rstan: :stan)
make model ("X -> Y") |> and view as table or plot:
set_parameters(statement = "Y[X=1] > Y[X=0]", parameters = .5) @ Causal syntax plot(results)
CausalQueries uses a causal syntax that lets you describe arbitrary observational or Causal Queries
i c. Graph your model controlled values of a node. Square brackets indicate controlled values (implied application
of the “do” operator). Y[X=1]>Y[X=0] | I |
make _model("X -> M -> Y <- X; X <> Y") [> plot() An observational query: types that produce Y == given X==1 & Y==1 & M==1 © |
p
make_model("X -> M -> Y <- X") |[>
Xl get_query_types("Y==1")
.. = = Y[X=1]>Y[X=0] | I o |
Tl A simple counterfactual query: types that produce Y == 1 when X is setto 1. given X==1 & Y==1 |
M % make_model("X -> Y") [>
Pt t t 7 Ll il L
get_query_types("Y[X=1]) VXA YX=0]] I Iy .
Y A complex query: types for which Y == 1 when X=1 and M is held constant at the value it
would take if X were 0. ! ! ! ! !
0.00 0.25 0.50 0.75 1.00
i . Inspect your model make _model("X -> M -> Y") |> value
get_query_types("Y[M=M[X=0], X=1]==1")
make_model("X -> Y") |> inspect("nodal_types") We provide helpers for common causal statements (increasing, decreasing, using - posteriors —e— priors
n — n 1 n n
make_model("X -> Y") |> inspect("causal_types") interacts, etc.), which are useful for querying models or setting restrictions.
i CausalQueries makes it easy to make, update, and query causal models defined over binary variables. Model parameters are defined using potential outcomes and updated with rstan. For more see https://integrated-inferences.github.io/ CC BY SA package version 1.4.4 « Updated: 2026-01-25

https://integrated-inferences.github.io/

	1. Make your model
	2. Update your model
	3. Query your model

