Observe data, given a strategy
Usage
observe_data(
complete_data,
observed = NULL,
nodes_to_observe = NULL,
prob = 1,
m = NULL,
subset = TRUE
)
Arguments
- complete_data
A
data.frame
. Data observed and unobserved.- observed
A
data.frame
. Data observed.- nodes_to_observe
A list. Nodes to observe.
- prob
A scalar. Observation probability.
- m
A integer. Number of units to observe; if specified,
m
overridesprob
.- subset
A character. Logical statement that can be applied to rows of complete data. For instance observation for some nodes might depend on observed values of other nodes; or observation may only be sought if data not already observed!
Value
A data.frame
with logical values indicating which nodes
to observe in each row of `complete_data`.
See also
Other data_generation:
data_helpers
,
get_all_data_types()
,
make_data_single()
Examples
model <- make_model("X -> Y")
df <- make_data(model, n = 8)
# Observe X values only
CausalQueries:::observe_data(complete_data = df, nodes_to_observe = "X")
#> X Y
#> 1 TRUE FALSE
#> 2 TRUE FALSE
#> 3 TRUE FALSE
#> 4 TRUE FALSE
#> 5 TRUE FALSE
#> 6 TRUE FALSE
#> 7 TRUE FALSE
#> 8 TRUE FALSE
# Observe half the Y values for cases with observed X = 1
CausalQueries:::observe_data(complete_data = df,
observed = CausalQueries:::observe_data(complete_data = df, nodes_to_observe = "X"),
nodes_to_observe = "Y", prob = .5,
subset = "X==1")
#> X Y
#> 1 TRUE FALSE
#> 2 TRUE FALSE
#> 3 TRUE FALSE
#> 4 TRUE FALSE
#> 5 TRUE TRUE
#> 6 TRUE TRUE
#> 7 TRUE FALSE
#> 8 TRUE FALSE