Functionality for altering parameters:
A vector of 'true' parameters; possibly drawn from prior or posterior.
Add a true parameter vector to a model. Parameters can be created using
arguments passed to make_parameters
and
make_priors
.
Extracts parameters as a named vector
Usage
make_parameters(
model,
parameters = NULL,
param_type = NULL,
warning = TRUE,
normalize = TRUE,
...
)
set_parameters(
model,
parameters = NULL,
param_type = NULL,
warning = FALSE,
...
)
get_parameters(model, param_type = NULL)
Arguments
- model
A
causal_model
. A model object generated bymake_model
.- parameters
A vector of real numbers in [0,1]. Values of parameters to specify (optional). By default, parameters is drawn from the parameters dataframe. See
inspect(model, "parameters_df")
.- param_type
A character. String specifying type of parameters to make "flat", "prior_mean", "posterior_mean", "prior_draw", "posterior_draw", "define". With param_type set to
define
use arguments to be passed tomake_priors
; otherwiseflat
sets equal probabilities on each nodal type in each parameter set;prior_mean
,prior_draw
,posterior_mean
,posterior_draw
take parameters as the means or as draws from the prior or posterior.- warning
Logical. Whether to warn about parameter renormalization.
- normalize
Logical. If parameter given for a subset of a family the residual elements are normalized so that parameters in param_set sum to 1 and provided params are unaltered.
- ...
Options passed onto
make_priors
.
Value
A vector of draws from the prior or distribution of parameters
An object of class causal_model
. It essentially returns a
list containing the elements comprising a model
(e.g. 'statement', 'nodal_types' and 'DAG') with true vector of
parameters attached to it.
A vector of draws from the prior or distribution of parameters
Examples
# make_parameters examples:
# Simple examples
model <- make_model('X -> Y')
data <- make_data(model, n = 2)
model <- update_model(model, data)
#>
#> SAMPLING FOR MODEL 'simplexes' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 2.1e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.131 seconds (Warm-up)
#> Chain 1: 0.119 seconds (Sampling)
#> Chain 1: 0.25 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'simplexes' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 1.6e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.16 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.135 seconds (Warm-up)
#> Chain 2: 0.147 seconds (Sampling)
#> Chain 2: 0.282 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'simplexes' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 1.6e-05 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.16 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.131 seconds (Warm-up)
#> Chain 3: 0.128 seconds (Sampling)
#> Chain 3: 0.259 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'simplexes' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 1.6e-05 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.16 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 0.132 seconds (Warm-up)
#> Chain 4: 0.119 seconds (Sampling)
#> Chain 4: 0.251 seconds (Total)
#> Chain 4:
make_parameters(model, parameters = c(.25, .75, 1.25,.25, .25, .25))
#> X.0 X.1 Y.00 Y.10 Y.01 Y.11
#> 0.250 0.750 0.625 0.125 0.125 0.125
make_parameters(model, param_type = 'flat')
#> Altering all parameters.
#> X.0 X.1 Y.00 Y.10 Y.01 Y.11
#> 0.50 0.50 0.25 0.25 0.25 0.25
make_parameters(model, param_type = 'prior_draw')
#> X.0 X.1 Y.00 Y.10 Y.01 Y.11
#> 0.758193981 0.241806019 0.003535982 0.145827064 0.663769655 0.186867299
make_parameters(model, param_type = 'prior_mean')
#> X.0 X.1 Y.00 Y.10 Y.01 Y.11
#> 0.50 0.50 0.25 0.25 0.25 0.25
make_parameters(model, param_type = 'posterior_draw')
#> X.0 X.1 Y.00 Y.10 Y.01 Y.11
#> 0.2836936 0.7163064 0.2093258 0.3982587 0.2795249 0.1128906
make_parameters(model, param_type = 'posterior_mean')
#> X.0 X.1 Y.00 Y.10 Y.01 Y.11
#> 0.7504418 0.2495582 0.3464986 0.1581378 0.3298614 0.1655022
# \donttest{
#altering values using \code{alter_at}
make_model("X -> Y") |> make_parameters(parameters = c(0.5,0.25),
alter_at = "node == 'Y' & nodal_type %in% c('00','01')")
#> X.0 X.1 Y.00 Y.10 Y.01 Y.11
#> 0.500 0.500 0.500 0.125 0.250 0.125
#altering values using \code{param_names}
make_model("X -> Y") |> make_parameters(parameters = c(0.5,0.25),
param_names = c("Y.10","Y.01"))
#> X.0 X.1 Y.00 Y.10 Y.01 Y.11
#> 0.500 0.500 0.125 0.500 0.250 0.125
#altering values using \code{statement}
make_model("X -> Y") |> make_parameters(parameters = c(0.5),
statement = "Y[X=1] > Y[X=0]")
#> X.0 X.1 Y.00 Y.10 Y.01 Y.11
#> 0.5000000 0.5000000 0.1666667 0.1666667 0.5000000 0.1666667
#altering values using a combination of other arguments
make_model("X -> Y") |> make_parameters(parameters = c(0.5,0.25),
node = "Y", nodal_type = c("00","01"))
#> X.0 X.1 Y.00 Y.10 Y.01 Y.11
#> 0.500 0.500 0.500 0.125 0.250 0.125
# Normalize renormalizes values not set so that value set is not renomalized
make_parameters(make_model('X -> Y'),
statement = 'Y[X=1]>Y[X=0]', parameters = .5)
#> X.0 X.1 Y.00 Y.10 Y.01 Y.11
#> 0.5000000 0.5000000 0.1666667 0.1666667 0.5000000 0.1666667
make_parameters(make_model('X -> Y'),
statement = 'Y[X=1]>Y[X=0]', parameters = .5,
normalize = FALSE)
#> X.0 X.1 Y.00 Y.10 Y.01 Y.11
#> 0.5 0.5 0.2 0.2 0.4 0.2
# }
# set_parameters examples:
make_model('X->Y') |> set_parameters(1:6) |> inspect("parameters")
#>
#> parameters
#> Model parameters with associated probabilities:
#>
#> X.0 X.1 Y.00 Y.10 Y.01 Y.11
#> 0.3333333 0.6666667 0.1666667 0.2222222 0.2777778 0.3333333
# Simple examples
model <- make_model('X -> Y')
data <- make_data(model, n = 2)
model <- update_model(model, data)
#>
#> SAMPLING FOR MODEL 'simplexes' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 2.1e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.152 seconds (Warm-up)
#> Chain 1: 0.123 seconds (Sampling)
#> Chain 1: 0.275 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'simplexes' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 2e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.136 seconds (Warm-up)
#> Chain 2: 0.136 seconds (Sampling)
#> Chain 2: 0.272 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'simplexes' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 1.5e-05 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.15 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.142 seconds (Warm-up)
#> Chain 3: 0.115 seconds (Sampling)
#> Chain 3: 0.257 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'simplexes' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 1.5e-05 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.15 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 0.13 seconds (Warm-up)
#> Chain 4: 0.145 seconds (Sampling)
#> Chain 4: 0.275 seconds (Total)
#> Chain 4:
set_parameters(model, parameters = c(.25, .75, 1.25,.25, .25, .25))
#>
#> Causal statement:
#> X -> Y
#>
#> Number of nodal types by node:
#> X Y
#> 2 4
#>
#> Number of causal types: 8
#>
#> Model has been updated and contains a posterior distribution with
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> Use inspect(model, 'stan_objects') to inspect stan summary
#>
set_parameters(model, param_type = 'flat')
#> Altering all parameters.
#>
#> Causal statement:
#> X -> Y
#>
#> Number of nodal types by node:
#> X Y
#> 2 4
#>
#> Number of causal types: 8
#>
#> Model has been updated and contains a posterior distribution with
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> Use inspect(model, 'stan_objects') to inspect stan summary
#>
set_parameters(model, param_type = 'prior_draw')
#>
#> Causal statement:
#> X -> Y
#>
#> Number of nodal types by node:
#> X Y
#> 2 4
#>
#> Number of causal types: 8
#>
#> Model has been updated and contains a posterior distribution with
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> Use inspect(model, 'stan_objects') to inspect stan summary
#>
set_parameters(model, param_type = 'prior_mean')
#>
#> Causal statement:
#> X -> Y
#>
#> Number of nodal types by node:
#> X Y
#> 2 4
#>
#> Number of causal types: 8
#>
#> Model has been updated and contains a posterior distribution with
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> Use inspect(model, 'stan_objects') to inspect stan summary
#>
set_parameters(model, param_type = 'posterior_draw')
#>
#> Causal statement:
#> X -> Y
#>
#> Number of nodal types by node:
#> X Y
#> 2 4
#>
#> Number of causal types: 8
#>
#> Model has been updated and contains a posterior distribution with
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> Use inspect(model, 'stan_objects') to inspect stan summary
#>
set_parameters(model, param_type = 'posterior_mean')
#>
#> Causal statement:
#> X -> Y
#>
#> Number of nodal types by node:
#> X Y
#> 2 4
#>
#> Number of causal types: 8
#>
#> Model has been updated and contains a posterior distribution with
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> Use inspect(model, 'stan_objects') to inspect stan summary
#>
# \donttest{
#altering values using \code{alter_at}
make_model("X -> Y") |> set_parameters(parameters = c(0.5,0.25),
alter_at = "node == 'Y' & nodal_type %in% c('00','01')")
#>
#> Causal statement:
#> X -> Y
#>
#> Number of nodal types by node:
#> X Y
#> 2 4
#>
#> Number of causal types: 8
#altering values using \code{param_names}
make_model("X -> Y") |> set_parameters(parameters = c(0.5,0.25),
param_names = c("Y.10","Y.01"))
#>
#> Causal statement:
#> X -> Y
#>
#> Number of nodal types by node:
#> X Y
#> 2 4
#>
#> Number of causal types: 8
#altering values using \code{statement}
make_model("X -> Y") |> set_parameters(parameters = c(0.5),
statement = "Y[X=1] > Y[X=0]")
#>
#> Causal statement:
#> X -> Y
#>
#> Number of nodal types by node:
#> X Y
#> 2 4
#>
#> Number of causal types: 8
#altering values using a combination of other arguments
make_model("X -> Y") |> set_parameters(parameters = c(0.5,0.25),
node = "Y", nodal_type = c("00","01"))
#>
#> Causal statement:
#> X -> Y
#>
#> Number of nodal types by node:
#> X Y
#> 2 4
#>
#> Number of causal types: 8
# }