Skip to contents

Adjust parameter matrix to allow confounding.

Usage

set_confound(model, confound = NULL)

Arguments

model

A causal_model. A model object generated by make_model.

confound

A list of statements indicating pairs of nodes whose types are jointly distributed (e.g. list("A <-> B", "C <-> D")).

Value

An object of class causal_model with updated parameters_df and parameter matrix.

Details

Confounding between X and Y arises when the nodal types for X and Y are not independently distributed. In the X -> Y graph, for instance, there are 2 nodal types for X and 4 for Y. There are thus 8 joint nodal types:


|          | t^X                |                    |           |
|-----|----|--------------------|--------------------|-----------|
|     |    | 0                  | 1                  | Sum       |
|-----|----|--------------------|--------------------|-----------|
| t^Y | 00 | Pr(t^X=0 & t^Y=00) | Pr(t^X=1 & t^Y=00) | Pr(t^Y=00)|
|     | 10 | .                  | .                  | .         |
|     | 01 | .                  | .                  | .         |
|     | 11 | .                  | .                  | .         |
|-----|----|--------------------|--------------------|-----------|
|     |Sum | Pr(t^X=0)          | Pr(t^X=1)          | 1         |

This table has 8 interior elements and so an unconstrained joint distribution would have 7 degrees of freedom. A no confounding assumption means that Pr(t^X | t^Y) = Pr(t^X), or Pr(t^X, t^Y) = Pr(t^X)Pr(t^Y). In this case there would be 3 degrees of freedom for Y and 1 for X, totaling 4 rather than 7.

set_confound lets you relax this assumption by increasing the number of parameters characterizing the joint distribution. Using the fact that P(A,B) = P(A)P(B|A) new parameters are introduced to capture P(B|A=a) rather than simply P(B). For instance here two parameters (and one degree of freedom) govern the distribution of types X and four parameters (with 3 degrees of freedom) govern the types for Y given the type of X for a total of 1+3+3 = 7 degrees of freedom.

See also

Examples


make_model('X -> Y; X <-> Y') |>
inspect("parameters")
#> 
#> parameters
#> Model parameters with associated probabilities: 
#> 
#>      X.0      X.1 Y.00_X.0 Y.10_X.0 Y.01_X.0 Y.11_X.0 Y.00_X.1 Y.10_X.1 
#>     0.50     0.50     0.25     0.25     0.25     0.25     0.25     0.25 
#> Y.01_X.1 Y.11_X.1 
#>     0.25     0.25 

make_model('X -> M -> Y; X <-> Y') |>
inspect("parameters")
#> 
#> parameters
#> Model parameters with associated probabilities: 
#> 
#>      X.0      X.1     M.00     M.10     M.01     M.11 Y.00_X.0 Y.10_X.0 
#>     0.50     0.50     0.25     0.25     0.25     0.25     0.25     0.25 
#> Y.01_X.0 Y.11_X.0 Y.00_X.1 Y.10_X.1 Y.01_X.1 Y.11_X.1 
#>     0.25     0.25     0.25     0.25     0.25     0.25 

model <- make_model('X -> M -> Y; X <-> Y; M <-> Y')
inspect(model, "parameters_df")
#> 
#> parameters_df
#> Mapping of model parameters to nodal types: 
#> 
#>   param_names: name of parameter
#>   node:        name of endogeneous node associated
#>                with the parameter
#>   gen:         partial causal ordering of the
#>                parameter's node
#>   param_set:   parameter groupings forming a simplex
#>   given:       if model has confounding gives
#>                conditioning nodal type
#>   param_value: parameter values
#>   priors:      hyperparameters of the prior
#>                Dirichlet distribution 
#> 
#> 
#> snippet (use grab() to access full 38 x 8 object): 
#> 
#>      param_names node gen  param_set nodal_type     given param_value priors
#> 1            X.0    X   1          X          0                  0.50      1
#> 2            X.1    X   1          X          1                  0.50      1
#> 3           M.00    M   2          M         00                  0.25      1
#> 4           M.10    M   2          M         10                  0.25      1
#> 5           M.01    M   2          M         01                  0.25      1
#> 6           M.11    M   2          M         11                  0.25      1
#> 7  Y.00_M.00_X.0    Y   3 Y.M.00.X.0         00 M.00, X.0        0.25      1
#> 8  Y.10_M.00_X.0    Y   3 Y.M.00.X.0         10 M.00, X.0        0.25      1
#> 9  Y.01_M.00_X.0    Y   3 Y.M.00.X.0         01 M.00, X.0        0.25      1
#> 10 Y.11_M.00_X.0    Y   3 Y.M.00.X.0         11 M.00, X.0        0.25      1

# Example where set_confound is implemented after restrictions
make_model("A -> B -> C") |>
set_restrictions(increasing("A", "B")) |>
set_confound("B <-> C") |>
inspect("parameters")
#> 
#> parameters
#> Model parameters with associated probabilities: 
#> 
#>       A.0       A.1      B.00      B.10      B.11 C.00_B.00 C.10_B.00 C.01_B.00 
#> 0.5000000 0.5000000 0.3333333 0.3333333 0.3333333 0.2500000 0.2500000 0.2500000 
#> C.11_B.00 C.00_B.10 C.10_B.10 C.01_B.10 C.11_B.10 C.00_B.11 C.10_B.11 C.01_B.11 
#> 0.2500000 0.2500000 0.2500000 0.2500000 0.2500000 0.2500000 0.2500000 0.2500000 
#> C.11_B.11 
#> 0.2500000 

# Example where two parents are confounded
make_model('A -> B <- C; A <-> C') |>
  set_parameters(node = "C", c(0.05, .95, .95, 0.05)) |>
  make_data(n = 50) |>
  cor()
#> Warning: Possible ambiguity: use additional arguments or check behavior in parameters_df.
#>             A           C           B
#> A  1.00000000 -0.95431352 -0.06189845
#> C -0.95431352  1.00000000  0.02432316
#> B -0.06189845  0.02432316  1.00000000

 # Example with two confounds, added sequentially
model <- make_model('A -> B -> C') |>
  set_confound(list("A <-> B", "B <-> C"))
inspect(model, "statement")
#> 
#> Causal statement: 
#> A -> B; B -> C; B <-> A; C <-> B
# plot(model)